Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector.

PLoS Pathog

Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT United States of America.

Published: April 2018

Lyme disease in humans is caused by several genospecies of the Borrelia burgdorferi sensu lato (s.l.) complex of spirochetal bacteria, including B. burgdorferi, B. afzelii and B. garinii. These bacteria exist in nature as obligate parasites in an enzootic cycle between small vertebrate hosts and Ixodid tick vectors, with humans representing incidental hosts. During the natural enzootic cycle, infected ticks in endemic areas feed not only upon naïve hosts, but also upon seropositive infected hosts. In the current study, we considered this environmental parameter and assessed the impact of the immune status of the blood-meal host on the phenotype of the Lyme disease spirochete within the tick vector. We found that blood from a seropositive host profoundly attenuates the infectivity (>104 fold) of homologous spirochetes within the tick vector without killing them. This dramatic neutralization of vector-borne spirochetes was not observed, however, when ticks and blood-meal hosts carried heterologous B. burgdorferi s.l. strains, or when mice lacking humoral immunity replaced wild-type mice as blood-meal hosts in similar experiments. Mechanistically, serum-mediated neutralization does not block induction of host-adapted OspC+ spirochetes during tick feeding, nor require tick midgut components. Significantly, this study demonstrates that strain-specific antibodies elicited by B. burgdorferi s.l. infection neutralize homologous bacteria within feeding ticks, before the Lyme disease spirochetes enter a host. The blood meal ingested from an infected host thereby prevents super-infection by homologous spirochetes, while facilitating transmission of heterologous B. burgdorferi s.l. strains. This finding suggests that Lyme disease spirochete diversity is stably maintained within endemic populations in local geographic regions through frequency-dependent selection of rare alleles of dominant polymorphic surface antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886588PMC
http://dx.doi.org/10.1371/journal.ppat.1006959DOI Listing

Publication Analysis

Top Keywords

lyme disease
20
disease spirochete
12
tick vector
12
blood-meal host
8
enzootic cycle
8
homologous spirochetes
8
spirochetes tick
8
blood-meal hosts
8
heterologous burgdorferi
8
burgdorferi strains
8

Similar Publications

Molecular Identification of Species in Ticks Infesting Hedgehogs ( and ) in North-Western Poland.

Int J Mol Sci

December 2024

Department of Genetics and Genomics, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.

The western European hedgehog () and the northern white-breasted hedgehog () are natural hosts of the tick , the vector of tick-borne pathogens such as the bacteria responsible for Lyme disease. The aim of this study was to identify these pathogens in ticks collected from hedgehogs in northwestern Poland and to assess their genetic diversity by molecular analysis of the detected pathogens based on the gene and the intergenic spacer. Among 101 hedgehogs examined, 737 ticks were found on 56 (55.

View Article and Find Full Text PDF

A novel panel of peptide for serological identification of Borrelia burgdoferi sensu stricto, Borrelia garinii and Borrelia afzelii was developed and assessed in this study. The diagnostic algorithm of the novel test was initially trained testing 10 US human sera including 3 early-stage and 3 late-stage Lyme disease positive sera, 2 sera positive for Babesia and 2 sera positive for Syphilis, all purchased from a private biorepository. Findings were then corroborated testing (a) 33 additional EU follow-up positive sera from seroconverted patients bitten by ticks that tested positive for B.

View Article and Find Full Text PDF

Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen.

PLoS Pathog

January 2025

Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.

Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.

View Article and Find Full Text PDF

Background Objectives: This study was compared the Borrelia antibodies and chemokine ligand 13 (CXCL13) levels in cerebrospinal fluid (CSF) samples from cases diagnosed with relapsing-remitting multiple sclerosis (RRMS), radiologically isolated syndrome (RIS), and pseudotumour cerebri (PTC).

Methods: A total of 43 CSF samples were collected from patients diagnosed with RRMS, RIS and PTC. We prospectively investigated Borrelia IgG and IgM antibodies in the CSF samples of the cases by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) method, and CXCL13 levels by ELISA.

View Article and Find Full Text PDF

is a vector of several human pathogens in the United States, including the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes ( spp.), which remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!