We are developing a 1-mm resolution, high-sensitivity positron emission tomography (PET) system for loco-regional cancer imaging. The completed system will comprise two cm detector panels and contain 4 608 position sensitive avalanche photodiodes (PSAPDs) coupled to arrays of mm LYSO crystal elements for a total of 294 912 crystal elements. For the first time, this paper summarizes the design and reports the performance of a significant portion of the final clinical PET system, comprising 1 536 PSAPDs, 98 304 crystal elements, and an active field-of-view (FOV) of cm. The sub-system performance parameters, such as energy, time, and spatial resolutions are predictive of the performance of the final system due to the modular design. Analysis of the multiplexed crystal flood histograms shows 84% of the crystal elements have>99% crystal identification accuracy. The 511 keV photopeak energy resolution was 11.34±0.06% full-width half maximum (FWHM), and coincidence timing resolution was 13.92 ± 0.01 ns FWHM at 511 keV. The spatial resolution was measured using maximum likelihood expectation maximization reconstruction of a grid of point sources suspended in warm background. The averaged resolution over the central 6 cm of the FOV is 1.01 ± 0.13 mm in the X-direction, 1.84 ± 0.20 mm in the Y-direction, and 0.84 ± 0.11 mm in the Z-direction. Quantitative analysis of acquired micro-Derenzo phantom images shows better than 1.2 mm resolution at the center of the FOV, with subsequent resolution degradation in the y-direction toward the edge of the FOV caused by limited angle tomography effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2018.2799619 | DOI Listing |
Wave mixing (WM) techniques are crucial for applications such as supercontinuum generation, frequency conversion, and high-dimensional quantum encoding. However, their efficiency is often limited by complex phase-matching requirements, and current insights into phase-matching mechanisms for high-order WM remain limited. To address this, compact optical path configurations with high-peak-power, synchronous, multicolor ultrafast laser sources are needed to enhance high-order wave-mixing efficiency.
View Article and Find Full Text PDFCylindrical microlens arrays are important optical elements for autostereoscopic display. Conventional fixed focal length cylindrical microlens arrays do not allow switching between 2D mode and 3D mode when constructing a 3D viewing zone. In contrast, cylindrical liquid crystal microlens arrays with zoom characteristics allow switching between 2D and 3D states, as well as adjusting the width of the sub-viewing zone.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.
View Article and Find Full Text PDFDalton Trans
January 2025
Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany.
The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.
View Article and Find Full Text PDFNPJ Comput Mater
January 2025
Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Density-functional theory with extended Hubbard functionals (DFT + + ) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled d and f electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site and inter-site Hubbard parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!