Using a stabilizing agent-assisted co-assembly method, a novel nanocomposite of mesoporous carbon embedded with uniform tungsten oxide nanorods is obtained, which is converted into carbon-sheathed tungsten oxide nanoparticles by delicate calcination and further reduction. Through optimization of tungsten content, it is found that highly crystalline tungsten oxide nanoparticles are uniformly coated with an ultra-thin carbon layer. When applied into electrochemical charge-storage electrodes for supercapacitor and lithium-ion battery, an excellent average capacitance (129 F g−1, above 400 F cm−3), higher rate performance and significantly advanced cycle stability are observed. These improved charge storage properties are attributed to improved electrical conductivity and enhanced structural stability, which is induced by uniform carbon coating on partially reduced tungsten oxide nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2017.12474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!