Meningiomas represent one of the most frequently reported non-glial, primary brain and central nervous system (CNS) tumors. Meningiomas often display a spectrum of anomalous locations and morphological attributes, deterring their timely diagnosis. Majority of them are sporadic in nature and thus the present-day screening strategies, including radiological investigations, often result in misdiagnosis due to their aberrant and equivocal radiological facets. Therefore, it is pertinent to explore less invasive and patient-friendly biofluids such as serum for their screening and diagnostics. The utility of serum Raman spectroscopy in diagnosis and therapeutic monitoring of cancers has been reported in the literature. In the present study, for the first time, to the best of our knowledge, we have explored Raman spectroscopy to classify the sera of meningioma and control subjects. For this exploration, 35 samples each of meningioma and control subjects were accrued and the spectra revealed variance in the levels of DNA, proteins, lipids, amino acids and β-carotene, i.e., a relatively higher protein, DNA and lipid content in meningioma. Subsequent Principal Component Analysis (PCA) and Principal Component-Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) and limited independent test data, in a patient-wise approach, yielded a classification efficiency of 92% and 80% for healthy and meningioma, respectively. Additionally, in the analogous analysis between healthy and different grades of meningioma, similar results were obtained. These results indicate the potential of Raman spectroscopy in differentiating meningioma. As present methods suffer from known limitations, with the prospective validation on a larger cohort, serum Raman spectroscopy could be an adjuvant/alternative approach in the clinical management of meningioma.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an00224jDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
20
serum raman
12
meningioma
8
meningioma control
8
control subjects
8
raman
5
spectroscopy
5
early investigative
4
serum
4
investigative serum
4

Similar Publications

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

Phenotype and genetic spectrum of six Indian patients with bestrophinopathy.

Taiwan J Ophthalmol

December 2024

Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.

The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.

View Article and Find Full Text PDF

We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!