A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of hydroxyl group position in flavonoids on inducing single‑stranded DNA damage mediated by cupric ions. | LitMetric

Quercetin has been demonstrated to produce DNA damage in the presence of metal ions. In the present study, 7 natural and 5 semi‑synthetic glycosylated flavonoids were utilized to investigate the cupric ion (Cu2+)‑dependent DNA damage in vitro. The reaction mixture, containing single‑stranded DNA, different concentrations of flavonoids and cupric ion in the buffer, was incubated at three different temperatures. DNA damage was then assessed by gel electrophoresis followed by densitometric analysis. The reaction mixture with quercetin at 4, 20 and 54˚C induced DNA damage in a concentration‑ and temperature‑dependent manner. Furthermore, only the reaction at 54˚C resulted in DNA damage in flavonoids with glucosyl substitution of the hydroxyl group at the 3‑position on the C ring in quercetin. By contrast, loss of the hydroxyl group at the 3‑position on the C ring, or at the 3'‑ or 4'‑position on the B ring of quercetin, did not portray DNA damage formation at the investigated experimental temperatures. In addition, the experimental results suggested that the hydroxyl group at the 3‑position on the C ring produced the strongest capability to induce DNA damage in the presence of cupric ions. Furthermore, hydroxyl groups at the 3'‑ or 4'‑position on the B ring were only able to induce DNA damage at higher temperatures, and were less efficient in comparison with the hydroxyl group at the 3‑position on the C ring. Cupric ion chelating capacity was also assessed with spectroscopic analysis, and quercetin presented the largest chelating capacity among the tested flavonoids. Hydroxyl radical formation was assessed with a luminol reaction, and quercetin presented faster consumption of luminol. These results suggest that the 3‑position hydroxyl group of the C ring is required to induce DNA damage at low temperatures. Furthermore, the results of the present study also indicated that the presence of cupric ions will decrease the activity of the glycosylated quercetins, in terms of their ability to induce DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2018.3615DOI Listing

Publication Analysis

Top Keywords

dna damage
44
hydroxyl group
24
group 3‑position
16
3‑position c ring
16
induce dna
16
dna
12
cupric ions
12
cupric ion
12
damage
11
hydroxyl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!