Metastasis displays a highly heterogeneous cellular population with cancer cells continuously evolving. As a result, a single-ligand nanoparticle cannot account for the continuously changing expression of targetable biomarkers over time and space. To effectively direct nanoparticles to metastasis, we developed a multi-ligand nanoparticle by using four different types of ligands on the same nanoparticle that target biomarkers on the endothelium associated with metastatic disease. These vascular targets included αvβ3 integrin, P-selectin, EGFR and fibronectin. Using terminal and in vivo imaging studies, the targeting performance of the multi-ligand nanoparticles was compared to the single-ligand nanoparticle variants. All four single-ligand nanoparticle variants achieved significant targeting of lung metastasis in the 4T1 mouse model of breast cancer metastasis with about 2.5% of the injected dose being deposited into metastasis. A dual-ligand nanoparticle resulted in a nearly 2-fold higher deposition into lung metastases than its single-ligand counterparts. The multi-ligand nanoparticle significantly outperformed its targeting nanoparticle counterparts achieving a deposition of ∼7% of its injected nanoparticles into lung metastases. Using the high sensitivity of radionuclide imaging, PET imaging showed that a multi-ligand nanoparticle labeled with [18F]fluoride was able to precisely target metastatic disease at its very early stage of development in three different animal models of metastatic breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5908762PMC
http://dx.doi.org/10.1039/c8nr02513dDOI Listing

Publication Analysis

Top Keywords

single-ligand nanoparticle
12
multi-ligand nanoparticle
12
nanoparticle
9
cancer metastasis
8
multi-ligand nanoparticles
8
metastatic disease
8
nanoparticle variants
8
breast cancer
8
lung metastases
8
metastasis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!