The dimer of 9-anthraldehyde, namely heptacyclo[8.6.6.6.0.0.0.0]octacosa-3,5,7,11,13,15,17(22),18,20,23(28),24,26-dodecaene-1,9-carbaldehyde, CHO, has been synthesized by refluxing an ethanol solution in the presence of M(ClO) and 1,3-diaminopropan-2-ol (M = Co or Cu). Its structure has been determined by single-crystal X-ray diffraction, showing it to be a new polymorph, referred to as polymorph II, in the monoclinic space group P2/n. It is compared with the previously reported triclinic modification [Ehrenberg (1968). Acta Cryst. B24, 1123-1125], which is referred to as polymorph I. The asymmetric unit of polymorph II contains two half molecules located on crystallographic centres, while the asymmetric unit of polymorph I includes one half molecule, also located on a crystallographic centre. Time-dependent density functional theory (TD-DFT) at the RB3LYP level using the 6-31G(d,p) basis set was applied. The predicted electronic absorption spectrum is in good agreement with the experimental one. The analysis of the calculated electronic absorption spectrum of polymorph II was carried out in order to assign the observed electronic transitions and to determine their character. A natural bonding orbital (NBO) analysis was executed at the same level to evaluate charge-transfer, intramolecular hydrogen-bonding interactions and hyperconjugative interactions. The third-order nonlinear optical (NLO) properties of the compound were appraised by the ZINDO/sum-over-states method in both static and dynamic states. The orientationally averaged (isotropic) value of γ for the compound is greater than the corresponding value of 4-nitroaniline (pNA).

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229618003534DOI Listing

Publication Analysis

Top Keywords

natural bonding
8
bonding orbital
8
third-order nonlinear
8
nonlinear optical
8
referred polymorph
8
asymmetric unit
8
unit polymorph
8
located crystallographic
8
electronic absorption
8
absorption spectrum
8

Similar Publications

Dynamical Disorder in the Mesophase Ferroelectric HdabcoClO: A Machine-Learned Force Field Study.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway.

Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds.

View Article and Find Full Text PDF

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

It is widely believed that the aggregation of amyloid β (Aβ) peptides into soluble oligomers is the root cause behind Alzheimer's disease. In this study, we have performed room-temperature molecular dynamics (MD) simulations of aggregated Aβ oligomers of different sizes (pentamer (O(5)), decamer (O(10)), and hexadecamer (O(16))) in binary aqueous solutions containing 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF]) ionic liquid (IL). Investigations have been carried out to obtain a microscopic understanding of the effects of the IL on the dynamic environment around the exterior surfaces and within the confined nanocores of the oligomers.

View Article and Find Full Text PDF

Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.

ACS Nano

January 2025

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.

Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!