AI Article Synopsis

  • - A study examined how low-carbohydrate, ketogenic diets affect anaerobic exercise performance compared to high-carbohydrate diets, observing 16 participants over a period of four days on each diet.
  • - Results showed that the low-carb diet led to lower urine pH and increased ketones, which correlated with a 7% decrease in peak power and a 15% decrease in total distance run during anaerobic exercise tests.
  • - The findings suggest that short-term ketogenic diets may impair performance in high-intensity, short-duration activities, which is significant for athletes focusing on these types of exercises.

Article Abstract

Background: Low-carbohydrate, ketogenic diets cause mild, subclinical systemic acidosis. Anaerobic exercise performance is limited by acidosis. Therefore, we evaluated the hypothesis that a low-carbohydrate, ketogenic diet impairs anaerobic exercise performance, as compared to a high-carbohydrate diet.

Methods: Sixteen men and women (BMI, 23±1 kg/m2, age 23±1 years) participated in a randomized-sequence, counterbalanced crossover study in which they underwent exercise testing after 4 days of either a low-carbohydrate, ketogenic diet (LC; <50 g/day and <10% of energy from carbohydrates) or a high-carbohydrate diet (HC; 6-10 g/kg/day carbohydrate). Dietary compliance was assessed with nutrient analysis of diet records, and with measures of urine pH and ketones. Anaerobic exercise performance was evaluated with the Wingate anaerobic cycling test and the yo-yo intermittent recovery test.

Results: The diets were matched for total energy (LC: 2333±158 kcal/d; HC: 2280±160 kcal/d; P=0.65) but differed in carbohydrate content (9±1% vs. 63±2% of energy intake; P<0.001). LC resulted in lower urine pH (5.9±0.1 vs. 6.3±0.2, P=0.004) and the appearance of urine ketones in every participant. LC resulted in 7% lower peak power (801±58 watts vs. 857±61 watts, P=0.008) and 6% lower mean power (564±50 watts vs. 598±51 watts, P=0.01) during the Wingate Test. Total distance ran in the yo-yo intermittent recovery test was 15% less after LC diet (887±139 vs. 1045±145 meters, P=0.02).

Conclusions: Short-term low-carbohydrate, ketogenic diets reduce exercise performance in activities that are heavily dependent on anaerobic energy systems. These findings have clear performance implications for athletes, especially for high-intensity, short duration activities and sports.

Download full-text PDF

Source
http://dx.doi.org/10.23736/S0022-4707.18.08318-4DOI Listing

Publication Analysis

Top Keywords

low-carbohydrate ketogenic
16
ketogenic diet
12
anaerobic exercise
12
exercise performance
12
diet impairs
8
impairs anaerobic
8
low-carbohydrate
4
exercise
4
performance exercise-trained
4
exercise-trained women
4

Similar Publications

: Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of fertile age. Some studies suggest that a ketogenic diet (KD) may have a role in treating PCOS. We aimed to demonstrate the long-term effectiveness of a KD in PCOS.

View Article and Find Full Text PDF

Introduction: Obesity is a growing public health issue, especially among young adults, with long-term management strategies still under debate. This prospective study compares the effects of caloric restriction and isocaloric diets with different macronutrient distributions on body composition and anthropometric parameters in obese women during a 12-week weight loss program, aiming to identify the most effective dietary strategies for managing obesity-related health outcomes.

Methods: A certified clinical nutritionist assigned specific diets over a 12-week period to 150 participants, distributed as follows: hypocaloric diets-low-energy diet (LED, 31 subjects) and very low-energy diet (VLED, 13 subjects); isocaloric diets with macronutrient distribution-low-carbohydrate diet (LCD, 48 subjects), ketogenic diet (KD, 23 subjects), and high-protein diet (HPD, 24 subjects); and isocaloric diet without macronutrient distribution-time-restricted eating (TRE, 11 subjects).

View Article and Find Full Text PDF

Fibromyalgia (FM) is a chronic disorder that causes damage to the neuro-muscular system and alterations in the intestinal microbiota and affects the psychological state of the patient. In our previous study, we showed that 22 women patients subjected to a specific very low-carbohydrate ketogenic therapy (VLCKD) showed an improvement in clinical scores as well as neurotransmission-related and psychological dysfunctions and intestinal dysbiosis. Furthermore, NMR metabolomic data showed that changes induced by VLCKD treatment were evident in all metabolic pathways related to fibromyalgia biomarkers.

View Article and Find Full Text PDF

Can Endogenous or Exogenous Ketosis Tackle the Constraints of Ultra-Endurance Exercise?

Exerc Sport Sci Rev

December 2024

Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

A high-fat, low-carbohydrate, ketogenic diet has already appealed to athletes for a long time due to its purported ability to improve exercise performance and post-exercise recovery. The availability of ketone supplements has further sparked such interest. The review therefore focuses on the potential beneficial impact of exogenous and endogenous ketosis in the context of ultra-endurance exercise.

View Article and Find Full Text PDF

Ketogenic diet in treating sepsis-related acquired weakness: is it friend or foe?

Front Nutr

November 2024

Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China.

Background: Sepsis is the body's extreme response to an infection leading to organ dysfunction. Sepsis-related acquired weakness (SAW), a critical illness closely related to metabolic disorders, is characterized by generalized sepsis-induced skeletal muscle weakness, mainly manifesting as symmetrical atrophy of respiratory and limb muscles. Muscle accounts for 40% of the body's total mass and is one of the major sites of glucose and energy absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!