Excessive Zn in the aquatic environment can be toxic and causes dysfunction in Zn homeostasis for fish, which ultimately influences the function of various biological processes. Zn homeostasis is controlled by Zn transporters. This study cloned and characterized the full-length cDNA sequences of six Zn transport-relevant genes (ZnT1, ZnT5, ZnT7, ZIP4, ZIP5 and MTF-1) from yellow catfish Pelteobagrus fulvidraco. The six genes share similar domains to their corresponding members of mammals. Their mRNA amounts were widely existent across eight tissues (intestine, liver, brain, heart, gill, muscle, spleen and mesenteric fat), but relatively predominant in the liver and intestine. On day 28, Zn exposure tended to increase transcript levels of ZnT1, ZnT5 and MTF-1, decrease hepatic ZIP5 expression, but did not significantly affect the expression of ZnT7 and ZIP4. On day 56, Zn exposure tended to increase transcript levels of ZnT1 and MTF-1, down-regulate hepatic mRNA amounts of ZIP4 and ZIP5; among three Zn treatments, ZnT5 expression in the 0.5 mg Zn/L group and ZnT7 expression in the 0.25 mg Zn/L group were the highest. The mRNA abundances of these genes showed Zn concentration- and exposure time-dependent manners. For the first time, we characterized the full-length cDNA sequences of six Zn transport-relevant genes in fish, explored their tissue expression profiles and transcriptional responses to Zn exposure. Our study built good basis for further investigating their physiological functions of these genes and provided new insights into the regulatory mechanisms of Zn homeostasis in fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-018-0099-1 | DOI Listing |
J Fish Biol
January 2025
Key Laboratory of Freshwater Biodiversity Conservation Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
NOD-like receptors are significant contributors to the immune response of fish against different types of pathogen invasion. NOD1 and NOD2 genes of yellow catfish (Tachysurus fulvidraco) were identified and characterized in this study. Yellow catfish NOD1 and NOD2 have open reading frames (ORFs) of 2841 and 2949 bp, encoding 946 and 982 amino acids, respectively.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
Malondialdehyde (MDA) is a reactive carbonyl compound produced through lipid peroxidation during feed storage, which poses a significant threat to fish health. This study aimed to evaluate the effects of dietary MDA on the growth rate, gastrointestinal health, and muscle quality of striped catfish (). A basal diet (M0) containing 34% crude protein and 10.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China. Electronic address:
Hypoxia disrupts multiple physiological processes, including metabolism, immunity, and reproduction in teleosts. The brain plays a critical role in adapting to environmental changes, regulating the endocrine system, and controlling reproduction. The present study investigated the sex-specific cerebral responses to chronic hypoxia through an integrated analysis of the transcriptome, proteome, and metabolome of yellow catfish.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
Different viruses are abundant in aquatic ecosystems. There has been limited research on the viral communities in the upper reaches of the Yangtze River. Yellow catfish (), an important economic fish that is widely distributed in the upper reaches of the Yangtze River, was selected as the research object.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!