On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water.

Phys Chem Chem Phys

CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy.

Published: April 2018

By means of atomistic molecular dynamics simulations we investigate the behaviour of poly(N-isopropylacrylamide), PNIPAM, in water at temperatures below and above the lower critical solution temperature (LCST), including the undercooled regime. The transition between water soluble and insoluble states at the LCST is described as a cooperative process involving an intramolecular coil-to-globule transition preceding the aggregation of chains and the polymer precipitation. In this work we investigate the molecular origin of such cooperativity and the evolution of the hydration pattern in the undercooled polymer solution. The solution behaviour of an atactic 30-mer at high dilution is studied in the temperature interval from 243 to 323 K with a favourable comparison to available experimental data. In the water soluble states of PNIPAM we detect a correlation between polymer segmental dynamics and diffusion motion of bound water, occurring with the same activation energy. Simulation results show that below the coil-to-globule transition temperature PNIPAM is surrounded by a network of hydrogen bonded water molecules and that the cooperativity arises from the structuring of water clusters in proximity to hydrophobic groups. Differently, the perturbation of the hydrogen bond pattern involving water and amide groups occurs above the transition temperature. Altogether these findings reveal that even above the LCST PNIPAM remains largely hydrated and that the coil-to-globule transition is related with a significant rearrangement of the solvent in the proximity of the surface of the polymer. The comparison between the hydrogen bonding of water in the surrounding of PNIPAM isopropyl groups and in the bulk displays a decreased structuring of solvent at the hydrophobic polymer-water interface across the transition temperature, as expected because of the topological extension along the chain of such interface. No evidence of an upper critical solution temperature behaviour, postulated in theoretical and thermodynamics studies of PNIPAM aqueous solution, is observed in the low temperature domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932979PMC
http://dx.doi.org/10.1039/c8cp00537kDOI Listing

Publication Analysis

Top Keywords

coil-to-globule transition
16
transition temperature
12
water
9
molecular origin
8
critical solution
8
solution temperature
8
water soluble
8
transition
7
temperature
7
pnipam
6

Similar Publications

Maximizing the binding properties of thermoresponsive molecularly imprinted nanoparticles (MIN) was aimed to explore their feasibility as antibody substitutes in protein immunoprecipitation (IPP) with magnetic streptavidin beads (MSB). Thermoresponsive MIN targeting the cannabinoid CB receptor were produced by epitope imprinting through solid-phase synthesis. It was intended to determine how different variables influenced physicochemical features, binding behaviour and immunoprecipitation of the target recombinant glutathione S-transferase tagged fusion protein (GST-CTer).

View Article and Find Full Text PDF

It appeared certain that elastin condensates retain liquid-like properties. However, a recent experimental study demonstrated that their aggregate states might depend on the length of hydrophobic domains. To gain microscopic insight into this behavior, we employ atomistic modeling to assess the conformational properties of hydrophobic elastin-like polypeptides (ELPs).

View Article and Find Full Text PDF

Cation-induced intramolecular coil-to-globule transition in poly(ADP-ribose).

Nat Commun

September 2024

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.

Poly(ADP-ribose) (PAR), a non-canonical nucleic acid, is essential for DNA/RNA metabolism and protein condensation, and its dysregulation is linked to cancer and neurodegeneration. However, key structural insights into PAR's functions remain largely uncharacterized, hindered by the challenges in synthesizing and characterizing PAR, which are attributed to its length heterogeneity. A central issue is how PAR, comprised solely of ADP-ribose units, attains specificity in its binding and condensing proteins based on chain length.

View Article and Find Full Text PDF

Modulating the isotopic hydrogen-deuterium exchange in functionalized nanocellulose to optimize SANS contrast.

Carbohydr Polym

December 2024

Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia. Electronic address:

Contrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!