Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.

eNeuro

Coller School of Management, Tel Aviv University, Tel Aviv 6997801, Israel.

Published: January 2019

Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883250PMC
http://dx.doi.org/10.1523/ENEURO.0346-17.2018DOI Listing

Publication Analysis

Top Keywords

sensory modality
12
vmpfc represents
8
common currency
8
irrespective sensory
8
sensory
5
common sense
4
sense choice
4
choice sensory
4
modality neural
4
neural representations
4

Similar Publications

Previous research has shown that, when multiple similar items are maintained in working memory, recall precision declines. Less is known about how heterogeneous sets of items across different features within and between modalities impact recall precision. In two experiments, we investigated modality (Experiment 1, n = 79) and feature-specific (Experiment 2, n = 154) load effects on working memory performance.

View Article and Find Full Text PDF

Introduction: This research is focused on early detection of Alzheimer's disease (AD) using a multiscale feature fusion framework, combining biomarkers from memory, vision, and speech regions extracted from magnetic resonance imaging and positron emission tomography images.

Methods: Using 2D gray level co-occurrence matrix (2D-GLCM) texture features, volume, standardized uptake value ratios (SUVR), and obesity from different neuroimaging modalities, the study applies various classifiers, demonstrating a feature importance analysis in each region of interest. The research employs four classifiers, namely linear support vector machine, linear discriminant analysis, logistic regression (LR), and logistic regression with stochastic gradient descent (LRSGD) classifiers, to determine feature importance, leading to subsequent validation using a probabilistic neural network classifier.

View Article and Find Full Text PDF

Duration adaptation depends on the perceived rather than physical duration and can be observed across sensory modalities.

Perception

January 2025

State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China; Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, China.

Previous research has indicated that exposure to sensory stimuli of short or long durations influences the perceived duration of subsequent stimuli within the same modality. However, it remains unclear whether this adaptation is driven by the stimulus physical duration or by the perceived duration. We hypothesized that the absence of cross-modal duration adaptation observed in earlier studies was due to the mismatched perceived durations of adapting stimuli.

View Article and Find Full Text PDF

Electric transportation and electroreception in hummingbird flower mites.

Proc Natl Acad Sci U S A

February 2025

School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.

Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.

View Article and Find Full Text PDF

Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!