Thermal injury induces a complex immunometabolic response, characterized by hyperglycemia, extensive inflammation and persistent hypermetabolism. It has been suggested that attenuation of the hypermetabolic response is beneficial for patient wellbeing. To that effect, metformin represents an attractive therapeutic agent, as its effects on glycemia, inflammation and bioenergetics can improve outcomes in burn patients. Therefore, we studied metformin and its effects on mitochondrial bioenergetics in a murine model of thermal injury. We set out to determine the impact of this agent on mitochondrial hypermetabolism (adult mice) and mitochondrial dysfunction (aged mice). Seahorse respirometry complimented by in-gel activity assays were used to elucidate metformin's cellular mechanism. We found that metformin exerts distinctly different effects, attenuating the hypermetabolic mitochondria of adult mice while significantly improving mitochondrial bioenergetics in the aged mice. Furthermore, we observed that these changes occur both with and without adenosine monophosphate kinase (AMPK) activation, respectively, and analyzed damage markers to provide further context for metformin's beneficial actions. We suggest that metformin has a dual role following trauma, acting via both AMPK-dependent and independent pathways depending on bioenergetic status. These findings help further our understanding of metformin's biomolecular effects and support the continued use of this drug in patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884829PMC
http://dx.doi.org/10.1038/s41598-018-24017-7DOI Listing

Publication Analysis

Top Keywords

bioenergetic status
8
thermal injury
8
mitochondrial bioenergetics
8
adult mice
8
aged mice
8
metformin
5
effects
5
metformin adapts
4
adapts cellular
4
cellular effects
4

Similar Publications

Investigating How Eating Behavior Shapes Mental Health: A Cross-Sectional Study.

Physiol Behav

January 2025

Hacettepe University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Sihhiye, Ankara, Turkey. Electronic address:

This study aimed to examine the relationship between eating behavior, nutritional status and mental health. It is a cross-sectional study conducted on a sample of 360 healthy individuals aged 19-64 years. The General Health Questionnaire (GHQ-12) was used to evaluate mental health and the Three-Factor Eating Scale (TFEQ-R21) was used to assess eating behavior.

View Article and Find Full Text PDF

Mitochondrial function is modulated by its interaction with the endoplasmic reticulum (ER). Recent research indicates that these contacts are disrupted in familial models of amyotrophic lateral sclerosis (ALS). We report here that this impairment in the crosstalk between mitochondria and the ER impedes the use of glucose-derived pyruvate as mitochondrial fuel, causing a shift to fatty acids to sustain energy production.

View Article and Find Full Text PDF

The Management of Bone Defects in Rett Syndrome.

Calcif Tissue Int

January 2025

Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.

Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.

View Article and Find Full Text PDF

Background: Mitochondria plays a crucial role at synapses in providing synaptic energy, healthy synaptic function, and cognitive functions. Amyloid-beta and phosphorylated tau protein oligomers cause severe mitochondrial defects in Alzheimer's disease (AD), which leads to the lack of synaptic energy and impaired synapse functions in AD. MicroRNAs (miRNAs) present within the mitochondria are involved in multiple mitochondrial activities and mitochondrial function.

View Article and Find Full Text PDF

Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!