We previously demonstrated that p15RS, a newly discovered tumor suppressor, inhibits Wnt/β-catenin signaling by interrupting the formation of β-catenin·TCF4 complex. However, it remains unclear how p15RS helps exert such an inhibitory effect on Wnt signaling based on its molecular structure. In this study, we reported that dimerization of p15RS is required for its inhibition on the transcription regulation of Wnt-targeted genes. We found that p15RS forms a dimer through a highly conserved leucine zipper-like motif in the coiled-coil terminus domain. In particular, residues Leu-248 and Leu-255 were identified as being responsible for p15RS dimerization, as mutation of these two leucines into prolines disrupted the homodimer formation of p15RS and weakened its suppression of Wnt signaling. Functional studies further confirmed that mutations of p15RS at these residues results in diminishment of its inhibition on cell proliferation and tumor formation. We therefore concluded that dimerization of p15RS governed by the leucine zipper-like motif is critical for its inhibition of Wnt/β-catenin signaling and tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961044 | PMC |
http://dx.doi.org/10.1074/jbc.RA118.001969 | DOI Listing |
J Biol Chem
May 2018
From the State Key Laboratory of Membrane Biology, School of Medicine and
We previously demonstrated that p15RS, a newly discovered tumor suppressor, inhibits Wnt/β-catenin signaling by interrupting the formation of β-catenin·TCF4 complex. However, it remains unclear how p15RS helps exert such an inhibitory effect on Wnt signaling based on its molecular structure. In this study, we reported that dimerization of p15RS is required for its inhibition on the transcription regulation of Wnt-targeted genes.
View Article and Find Full Text PDFSci China Life Sci
January 2014
Ministry of Education Key Laboratory of Protein Science, Center for Structure Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
CREPT and p15RS are two recently identified homologous proteins that regulate cell proliferation in an opposite way and are closely related to human cancer development. Both CREPT and p15RS consist of an N-terminal RPR domain and a C-terminal domain with high sequence homology. The transcription enhancement by CREPT is attributed to its interaction with RNA polymerase II (Pol II).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!