We report the synthesis of nanocrystals with an optical feature in the THz range. To do so, we develop a new synthetic procedure for the growth of HgTe, HgSe, and HgS nanocrystals, with strong size tunability from 5 to 200 nm. This is used to tune the absorption of the nanocrystals all over the infrared range up to terahertz (from 2 to 65 μm for absorption peak and even 200 μm for cutoff wavelength). The interest for this procedure is not limited to large sizes since for small objects we demonstrate low aggregation and good shape control (i.e., spherical object) while using nonexpansive and simple mercury halogenide precursors. By integrating these nanocrystals into an electrolyte-gated transistor, we evidence a change of carrier density from p-doped to n-doped as the confinement is vanishing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b02039DOI Listing

Publication Analysis

Top Keywords

nanocrystals
5
terahertz hgte
4
hgte nanocrystals
4
nanocrystals confinement
4
confinement report
4
report synthesis
4
synthesis nanocrystals
4
nanocrystals optical
4
optical feature
4
feature thz
4

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Prime editing has gained significant attention as a next-generation gene editing technology, owing to its unique advantages. However, realizing its potential requires effective delivery strategies. While adeno-associated virus (AAV) has been employed for delivery of prime editors in research settings, it presents inherent limitations related to vector size, ongoing expression, and inability to re-dose patients.

View Article and Find Full Text PDF

Extensive uses of silver nanoparticles (Ag NPs) in different industries result in exposure to these nanoparticle imperatives in our daily lives. Resveratrol is found in many plants as a natural compound. The present study aimed to estimate the renal toxic effects of Ag NPs in adult male albino rats and the underlying relevant mechanisms while studying the possible role of resveratrol in ameliorating these effects.

View Article and Find Full Text PDF

The investigation of changes in the membrane of cancer cells holds great potential for biomedical applications. Malignant cells exhibit overexpression of receptors, which can be used for targeted drug delivery, therapy, and bioimaging. Targeted bioimaging is one the most accurate imaging methods with a non-invasive nature, allowing for localization of the malignant cell without disrupting cellular integrity.

View Article and Find Full Text PDF

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!