Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eap.1695 | DOI Listing |
Landsc Ecol
January 2025
Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden.
Context: The vegetation composition of northeastern North American forests has significantly changed since pre-settlement times, with a marked reduction in conifer-dominated stands, taxonomic and functional diversity. These changes have been attributed to fire regime shifts, logging, and climate change.
Methods: In this study, we disentangled the individual effects of these drivers on the forest composition in southwestern Quebec from 1830 to 2000 by conducting retrospective modelling using the LANDIS-II forest landscape model.
Front Microbiol
January 2025
Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany.
Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Department of Marine Science, Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas, USA.
Marine heatwaves are increasingly common due to human-induced climate change. Under prolonged thermal stress on coral reefs, corals can undergo bleaching, leading to mass coral mortality and large-scale changes in benthic community composition. While coral mortality has clear, negative impacts on the body condition and populations of coral-dependent fish species, the mechanisms that drive these changes remain poorly resolved.
View Article and Find Full Text PDFNature
January 2025
Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
Rubisco is the primary CO-fixing enzyme of the biosphere, yet it has slow kinetics. The roles of evolution and chemical mechanism in constraining its biochemical function remain debated. Engineering efforts aimed at adjusting the biochemical parameters of rubisco have largely failed, although recent results indicate that the functional potential of rubisco has a wider scope than previously known.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Geoecology, Institute of Geosciences and Geography, Martin Luther University, Halle-Wittenberg, Halle (Saale), Germany.
In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!