The role of charge in 1,2,3-triazol(ium)-based halogen bonding activators.

Chem Commun (Camb)

Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.

Published: April 2018

The influence of charge on the performance of monocationic and dicationic triazol(ium)-based halogen bond donors was investigated. Next to the activity in a halide abstraction benchmark reaction, halogen bonding was also evaluated via X-ray structural analyses and isothermal titration calorimetry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933004PMC
http://dx.doi.org/10.1039/c8cc00527cDOI Listing

Publication Analysis

Top Keywords

halogen bonding
8
role charge
4
charge 123-triazolium-based
4
123-triazolium-based halogen
4
bonding activators
4
activators influence
4
influence charge
4
charge performance
4
performance monocationic
4
monocationic dicationic
4

Similar Publications

Exploring the bonding in alkaline earth halides AeX (Ae = Be-Ba, X = F-I) from Fermi hole localization and QTAIM perspectives.

Phys Chem Chem Phys

January 2025

Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.

A theoretical description of various [AeX] (Ae = Be-Ba, X = F-I) systems, some of which have been reported in the literature to bear an unusual quadruple bond between the metal and the halogen, is provided based on both (i) the localization of the Fermi hole and (ii) the topological analysis of the one-electron density. Insights into the bond order of various [AeX] systems are inferred on the basis of the number of electrons localized in the bond basin, the topology of the Fermi hole information computed along the bond axis, and the delocalization index. The results suggest that the [AeX] molecules present a bond with attributes closer to a classical dative bond than to a multiple one, being characterized by large stabilization due to the electrostatic interaction between the polarized metal and the halogen anion.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

This study introduces a novel approach for non-small cell lung cancer (NSCLC) treatment by developing BiSe-Polysorbate nanoparticles as a multifunctional platform for photothermal therapy and targeted drug delivery. The BiSe-Polysorbates nanoparticles are engineered as innovative photosensitive drug carriers, enhancing biocompatibility through the combination of BiSe and Polysorbates. Characterization techniques such as Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy confirm the successful synthesis of the nanoparticles.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, CHN·Br·CFI, contains one 2,2,6,6 tetra-methyl-piperidine-1-ium cation, one 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecule, and one uncoordinated bromide anion. In the crystal, the bromide anions link the 2,2,6,6-tetra-methyl-piperidine mol-ecules by inter-molecular C-H⋯Br and N-H⋯Br hydrogen bonds, leading to dimers, with the coplanar 1,2,3,4-tetra-fluoro-5,6-di-iodo-benzene mol-ecules filling the space between them. There is a π-π interaction between the almost parallel benzene rings [dihedral angle = 10.

View Article and Find Full Text PDF

The viability of the P═Se bond to serve as a monitor of the strength of a noncovalent bond was tested in the context of the (CH)PSe molecule. Density functional theory (DFT) computations paired this base with a collection of Lewis acids that spanned hydrogen, halogen, chalcogen, pnicogen, and tetrel bonding interactions and covered a wide range of bond strengths. A very strong linear correlation was observed between the interaction energy and the nuclear magnetic resonance (NMR) J(PSe) coupling constant, which could serve as an accurate indicator of bond strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!