New nontoxic and biocompatible ferroelectric materials are a subject undergoing intense study. One of the most promising research branches is focused on H-bonded organic or hybrid ferroelectrics. The engineering of these materials is based on mimicking the phase transition mechanisms of the well-known inorganic ferroelectrics. In our study, a coupled experimental and theoretical methodology was used for a precise investigation of the ferroelectric phase transition mechanism in ammonium sulfate (AS). A series of single-crystal X-ray diffraction measurements were performed in the temperature range between 273 and 163 K. The detailed inspection of the obtained static structural data, in the above-mentioned temperature range, allowed us to reveal dynamical effects at the ferroelectric phase transition. Accurate analysis of all geometrical features within the obtained crystal structures was carried out. The results were discussed in the view of previously discovered physical properties. X-ray studies were complemented by the use of quantum theory of atoms in molecules calculations and Hirshfeld surface analysis. Valence shell charge concentration analysis allowed us to find the subtle changes between charge density distribution within SO in para- and ferroelectric phases. H-bond interactions, geometrically classified in both AS phases, were all confirmed by the appropriate critical points. The interaction energies were estimated for the structures at 273, 233, 213, 183, and 163 K. Correlation between the geometrical approach and the results of theoretical calculations enabled us to discover the differences in interaction equilibrium between the AS phases. The mechanism of the phase transition originates from the disruption of the vibrational lattice mode between sulfate anions. Our studies resolved the problem, which was under discussion for more than 60 years.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.7b03161DOI Listing

Publication Analysis

Top Keywords

phase transition
20
ferroelectric phase
12
para- ferroelectric
8
temperature range
8
ferroelectric
5
phase
5
transition
5
unmasking mechanism
4
mechanism structural
4
structural para-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!