Background: Tea is one of the most popular beverages in the world. There are many secondary metabolites can be found in tea such as anthocyanins, proanthocyanidins, flavonols and catechins. These secondary metabolites in plants are proved to act protective components for human health effect. Plant hormone ethylene is considered to have an important role in regulation of plant development and signal transduction. This study evaluated the effect of ethylene signaling regulation in phenolic compounds in tea plants. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) enhanced contents of total catechin in treated oolong tea seedlings.

Results: The degree of epigallocatechin and epicatechin galloylation was increased after ACC treatment in oolong tea seedlings by high performance liquid chromatography determination. The contents of anthocyanins, flavonoids, and total polyphenol were higher after ACC treatment in comparison with control. Antioxidant enzyme such as catalase, superoxide dismutase, and total peroxidase decreased their antioxidant activities after ACC treatment, yet the activity of ascorbate peroxidase is increased. The ability of oxygen radical absorption and 2,2-diphenyl-1-picrylhydrazyl was used to evaluate the antioxidant activity, which was enhanced by ACC treatment.

Conclusions: Taken together the results of this study demonstrate that the ethylene signaling is involved in modulation of secondary metabolites accumulation and antioxidant ability that to enhance the benefit of human health in tea products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882471PMC
http://dx.doi.org/10.1186/s40529-018-0226-xDOI Listing

Publication Analysis

Top Keywords

ethylene signaling
12
secondary metabolites
12
acc treatment
12
human health
8
oolong tea
8
tea
6
ethylene
5
antioxidant
5
acc
5
signaling modulates
4

Similar Publications

Fruit dropping represents a concern in many fruit species, including L. This research investigated the role of two plant growth regulators (PGRs), naphthaleneacetic acid (NAA) and 1-methylcyclopropene (1-MCP), in mitigating preharvest berry dropping (PHBD) through affecting ethylene (ET) and auxin (AUX) metabolism and interactions, key hormones involved in abscission. The experiment was carried out on cv.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought.

Plants (Basel)

January 2025

Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.

View Article and Find Full Text PDF

Self-Powered, Flexible, Transparent Tactile Sensor Integrating Sliding and Proximity Sensing.

Materials (Basel)

January 2025

Department of Equipment Maintenance and Remanufacturing Engineering, Academy of Army Armored Forces, Beijing 100072, China.

Tactile sensing is currently a research hotspot in the fields of intelligent perception and robotics. The method of converting external stimuli into electrical signals for sensing is a very effective strategy. Herein, we proposed a self-powered, flexible, transparent tactile sensor integrating sliding and proximity sensing (SFTTS).

View Article and Find Full Text PDF

ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!