[Transmission pathways for resistant bacteria between animals and humans: antibiotics resistance in the One Health context].

Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz

Institut für Biometrie, Epidemiologie und Informationsverarbeitung, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Tierärztliche Hochschule Hannover, Hannover, Deutschland.

Published: May 2018

People and animals share the same environment and antibiotics are used in both. Thus, antibiotics resistance is a major common issue for human and veterinary medicine. The potential impact of antibiotics use in animals on resistance in humans is frequently the focus of debate. In this paper the transmission pathways of resistant bacteria between animals and humans are described and the question is addressed whether a reduction in antibiotics use in animals contributes to the improvement of the resistance situation in humans. Direct contact between humans and animals, transmission of bacteria via food, and indirect transmission via emissions in the environment and the subsequent exposure of humans via the environment are the major transmission routes to be considered. It can thus be established that the relevance of these various transmission routes varies significantly among bacterial species. Furthermore, despite numerous investigations, the exact significance of transmission pathways and the bacteria transferred for the resistance situation in humans cannot yet be precisely quantified. There is evidence that antibiotics use in animals fosters the spread of resistant organisms in animals. Recent studies also suggest that there might be a relationship between antibiotics use in animals and the occurrence of resistance in humans. However, this relationship is complex, and for a better understanding of it and the role of the various transmission pathways, further collaborative studies between veterinary and medical science are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00103-018-2717-zDOI Listing

Publication Analysis

Top Keywords

antibiotics animals
16
transmission pathways
12
animals
9
pathways resistant
8
resistant bacteria
8
bacteria animals
8
humans
8
animals humans
8
antibiotics resistance
8
resistance humans
8

Similar Publications

Inhalable biohybrid microrobots: a non-invasive approach for lung treatment.

Nat Commun

January 2025

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, USA.

Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes.

View Article and Find Full Text PDF

Integrative phenotypic and genomic analysis of extended-spectrum Beta-lactamase (ESBL) and carbapenemase genes in Enterobacteriaceae and Pseudomonaceae strains isolated from animals in a Spanish Veterinary Teaching Hospital.

Res Vet Sci

January 2025

Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; Complutense University of Madrid, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, av. Puerta de Hierro s/n, 28040 Madrid, Spain.

Antimicrobial resistance (AMR) is a major global health threat, exacerbated by globalization which facilitates the spread of resistant bacteria. Addressing this issue requires a One Health perspective, involving humans, animals, and the environment. This study aims to compare the phenotypic resistance profiles of 69 clinical bacterial isolates (Enterobacteriaceae and Pseudomonaceae) from a Veterinary Teaching Hospital in Spain with their genotypic resistance profiles based on the presence of Extended-Spectrum Beta-Lactamases (ESBLs), AmpC and carbapenemases -enconding genes.

View Article and Find Full Text PDF

Introduction: Staphylococcus aureus is a gram-positive, facultatively anaerobic coccus capable of causing infectious diseases in animals and humans. Especially dangerous are multidrug-resistant forms with poor or even no response to available treatments.

Objectives: The study aimed to verify the effect of enzybiotics on the healing of S.

View Article and Find Full Text PDF

Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation.

J Transl Med

January 2025

Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.

Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).

View Article and Find Full Text PDF

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!