The initial step in glycerolipid biosynthesis, especially in diverse allopolyploid crop species, is poorly understood, mainly due to the lack of an effective and convenient method for functional characterization of genes encoding glycerol-3-phosphate acyltransferases (GPATs) catalyzing this reaction. Here we present a novel complementation assay for quick and specific characterization of GPAT-encoding genes. Its key design involves rational construction of yeast conditional lethal ΔΔ double mutant bearing the heterologous gene whose leaky expression under repressed conditions does not support any non-specific growth, thereby circumventing the false positive problem encountered with the system based on the ΔΔ mutant harboring the native episomal gene whose leaky expression appears to be sufficient for generating enough GPAT activities for the non-specific restoration of the mutant growth. A complementation assay developed based on this novel mutant enables quick phenotypic screen of GPAT sequences. A high degree of specificity of our assay was exemplified by its ability to differentiate effectively GPAT-encoding genes from those of other fatty acyltransferases and lipid-related sequences. Using this assay, we show that AtGPAT1, AtGPAT5, and AtGPAT7 can complement the phosphatidate biosynthetic defect in the double mutants. Collectively, our assay provides a powerful tool for rapid screening, validation and optimization of GPAT sequences, aiding future engineering of the initial step of the triacylglycerol biosynthesis in oilseeds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867339 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00353 | DOI Listing |
Int J Mol Sci
December 2024
Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Pharmacy and BioMolecular Sciences, Liverpool John Moores University, Byram Street, Liverpool L3 3AF, UK.
Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555. Electronic address:
Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2025
Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, USA.
Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that the deletion of the operon reduced growth in the presence of sphingosine.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:
Cadmium (Cd) is one of the most dangerous environmental pollutants and is easily absorbed by food crops. Quinoa is a kind of coarse grain crop with rich nutrition and strong stress resistance, which is easy to accumulate Cd. The increasingly serious soil Cd pollution poses a serious threat to the food safety of quinoa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!