(Mtb) mutations are associated with global metabolic remodeling. However, the net effects of mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs. The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared. The mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS) after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin. Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867343 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.00494 | DOI Listing |
PLoS Comput Biol
January 2025
School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China.
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
A Gram-stain-positive, facultatively anaerobic, rod-shaped strain, designated SPB1-3, was isolated from tree bark. This strain exhibited heterofermentative production of dl-lactic acid from glucose. Optimal growth was observed at 25-40 °C, pH 4.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFBackground: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.
View Article and Find Full Text PDFFood Chem X
January 2025
Guiyang University, Guiyang 550005, China.
This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!