Autoantibodies to nuclear components of cells (antinuclear antibodies, ANA), including DNA (a-DNA), are widely used in the diagnosis and subtyping of certain autoimmune diseases, including systemic lupus erythematosus (SLE). Despite clinical use over decades, precise, reproducible measurement of a-DNA titers remains difficult, likely due to the substantial sequence and length heterogeneity of DNA purified from natural sources. We designed and tested a panel of synthetic nucleic acid molecules composed of native deoxyribonucleotide units to measure a-DNA. ELISA assays using these antigens show specificity and reproducibility. Applying the ELISA tests to serological studies of pediatric and adult SLE, we identified novel clinical correlations. We also observed preferential recognition of a specific synthetic antigen by antibodies in SLE sera. We determined the probable basis for this finding using computational analyses, providing valuable structural information for future development of DNA antigens. Synthetic nucleic acid molecules offer the opportunity to standardize assays and to dissect antibody-antigen interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883037 | PMC |
http://dx.doi.org/10.1038/s41598-018-23910-5 | DOI Listing |
Int J Biol Macromol
January 2025
Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
Cell-free systems are powerful synthetic biology technologies that can recapitulate gene expression and sensing without the complications of living cells. Cell-free systems can perform more advanced functions when genetic circuits are incorporated. Here we expand cell-free biosensing by engineering a highly specific isothermal amplification circuit called polymerase strand recycling (PSR), which leverages T7 RNA polymerase off-target transcription to recycle nucleic acid inputs within DNA strand displacement circuits.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou, 310003, China. Electronic address:
Background: Amplified imaging of microRNA (miRNA) in cancer cells is essential for understanding of the underlying pathological process. Synthetic catalytic DNA circuits represent pivotal tools for miRNA imaging. However, most existing catalytic DNA circuits can not achieve the reactant recycling operation in cells and in vivo.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.
Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!