A constitutive equation based on the hyperbolic sinusoidal Arrhenius-type model has been developed to describe the hot deformation behavior of a β-γ Ti-Al alloy containing 8 at.% of Nb. Experimental true stress-true strain data were acquired from isothermal hot compression tests conducted across a wide range of temperatures (1273 K~1473 K) and strain rates (0.001 s~1 s), and the changes in the experimental conditions were reflected in the values of the Zener-Hollomon parameter. The impact of true strain was expressed through material constants (A, α, n and Q), and it was found that a 7th order polynomial is appropriate to express the relations between the true strain and these material constants. The average absolute relative error (AARE) and correlation coefficient (R) were used to evaluate the accuracy of the constitutive equation, and the values obtained were 6.009% and 0.9961, respectively. These results indicate that the type of constitutive equation developed here can predict the flow stress for this alloy with good accuracy over a wide range of experimental conditions. Thus, equations of this form could be applied more widely to analyses of hot deformation mechanism and microstructure evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5883062 | PMC |
http://dx.doi.org/10.1038/s41598-018-23617-7 | DOI Listing |
Sci Rep
December 2024
Imperial College London, London, UK.
Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan.
The ductile properties of irradiated materials are among of the important indicators related to their structural integrity. These properties are generally determined by performing tensile tests on irradiated materials in the irradiation environment. Indentation tests are used for evaluating ductile properties easily and rapidly.
View Article and Find Full Text PDFHeliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
PLoS One
December 2024
Sinosteel Maanshan General Institute of Mining Research CO.,Ltd., Maanshan, China.
Hard structural planes mainly exist in rock slopes and their creep characteristics largely determine slope stability. Traditional models have some shortcomings in describing the creep characteristics of hard structural planes, such as poor adaptability and unclear physical meaning of parameters. In order to overcome these shortcomings, based on the creep failure mechanism of hard structural planes, an element combination model is adopted in the study.
View Article and Find Full Text PDFHeliyon
December 2024
Virginia Tech, Blacksburg, VA, USA.
Using traditional machine learning (ML) methods may produce results that are inconsistent with the laws of physics. In contrast, physics-based models of complex physical, biological, or engineering systems incorporate the laws of physics as constraints on ML methods by introducing loss terms, ensuring that the results are consistent with these laws. However, accurately deriving the nonlinear and high order differential equations to enforce various complex physical laws is non-trivial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!