The CAMTA gene family is crucial in managing both biotic and abiotic stresses in plants. Our comprehensive analysis of this gene family in cotton resulted in the identification of 6, 7 and 9 CAMTAs in three sequenced cotton species, i.e., Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively. All cotton CAMTAs were localized in the nucleus and possessed calmodulin-binding domain (CaMBD) as identified computationally. Phylogenetically four significant groups of cotton CAMTAs were identified out of which, Group II CAMTAs experienced higher evolutionary pressure, leading to a faster evolution in diploid cotton. The expansion of cotton CAMTAs in the genome was mainly due to segmental duplication. Purifying selection played a significant role in the evolution of cotton CAMTAs. Expression profiles of GhCAMTAs revealed that GhCAMTA2A.2 and GhCAMTA7A express profoundly in different stages of cotton fiber development. Positive correlation between expression of these two CAMTAs and fiber strength confirmed their functional relevance in fiber development. The promoter region of co-expressing genes network of GhCAMTA2A.2 and GhCAMTA7A showed a higher frequency of occurrence of CAMTA binding motifs. Our present study thus contributes to broad probing into the structure and probable function of CAMTA genes in Gossypium species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882909 | PMC |
http://dx.doi.org/10.1038/s41598-018-23846-w | DOI Listing |
Mol Plant Pathol
June 2019
Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions.
View Article and Find Full Text PDFSci Rep
April 2018
Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
The CAMTA gene family is crucial in managing both biotic and abiotic stresses in plants. Our comprehensive analysis of this gene family in cotton resulted in the identification of 6, 7 and 9 CAMTAs in three sequenced cotton species, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!