Structure and mass analysis of 12S and 19S dynein obtained from bull sperm flagella.

Cell Motil Cytoskeleton

Department of Molecular and Cell Biology, Pennsylvania State University, University Park.

Published: February 1988

The Brookhaven scanning transmission electron microscope (STEM) was used to elucidate the structures and masses of 12S and 19S dynein extracted from bull sperm flagella. The 12S particle was a single globular particle with an average mass of 311 +/- 10 kdaltons. The 19S dynein particles consisted of two globular heads joined to a common base. The average mass of the 19S particle was 1.6 +/- 0.04 X 10(6) daltons. Thus, with the exception of the larger mass, the bull sperm 19S dynein molecule resembles the two-headed 21S dynein obtained from sea urchin sperm flagella and the 18S dynein obtained from Chlamydomonas with the possibility of a third head giving rise to the 12S particle. The structure, mass and polypeptide composition of bull sperm flagella dynein is compared with outer arm dyneins previously obtained from Chlamydomonas, Tetrahymena, and sea urchin sperm flagella.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.970080409DOI Listing

Publication Analysis

Top Keywords

sperm flagella
20
19s dynein
16
bull sperm
16
structure mass
8
12s 19s
8
12s particle
8
average mass
8
sea urchin
8
urchin sperm
8
dynein
7

Similar Publications

CRISPR/Cas9-mediated knockout of Tektin 4-like gene (TEKT4L) causes male sterility of Cydia pomonella.

Insect Biochem Mol Biol

January 2025

College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China. Electronic address:

The sterile insect technique (SIT) is a well-established and environmentally benign method for population control. Identifying genes that regulate insect fertility while preserving growth and development is crucial for implementing a novel SIT-based pest management approach utilizing CRISPR/Cas9 to target these genes for genetic manipulation. Tektin (TEKT), an essential alpha-helical protein pivotal in sperm formation due to its role in cilia and flagella assembly, has garnered attention.

View Article and Find Full Text PDF

Novel variants of FSIP2 and SPEF2 cause varying degrees of spermatozoa damage in MMAF patients and favorable ART outcomes.

J Assist Reprod Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.

Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.

Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.

View Article and Find Full Text PDF

Oligoasthenoteratozoospermia (OAT) is a common cause of infertility among males, and the majority of cases of idiopathic OAT are thought to be attributed to genetic defects. In this study, the role of the CEP78 protein in spermatogenesis was initially investigated using Cep78 knockout (Cep78) mice. Notably, the male Cep78 mice exhibited the OAT phenotype and sterility.

View Article and Find Full Text PDF

Structural diversity of axonemes across mammalian motile cilia.

Nature

January 2025

Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.

Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.

View Article and Find Full Text PDF

D-Mannose-Mediated metabolic pathways sustain the molecular signatures of sperm function and fertilization.

J Adv Res

December 2024

Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China. Electronic address:

Introduction: Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question.

Objectives: To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!