The synthesis of ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylates (4, 5) was performed via the reaction of corresponding anilines with diethyl ethoxymethylenemalonate under conventional and also microwave promoted conditions. The treatment of 4 and 5 afforded the corresponding hydrazides (6 and 7). These hydrazides were converted to the corresponding carbo(thio)amides (9a-f and 10a-e) which were then subjected to an intramolecular cyclisation leading to the formation of quinolone-triazole hybrids (11a-f and 12a-e). The newly synthesized compounds were screened for their biological activities such as antioxidant capacity (AC) and acetylcholinesterase Activity. Inhibition of cholinesterases is an effective method to curb Alzheimer's disease, a progressive and fatal neurological disorder. A series of some novel quinolonederivatives were designed, synthesized, and their inhibitory effects on AChE were evaluated. We obtained our compounds and determined their anticholinesterase activities according to the Ellman's method. 9b and 10c showed the best AChE inhibition with 0.48 ± 0.02 and 0.52 ± 0.07, respectively. Docking studies were performed for the most active compounds (9b, 10c) and interaction modes with enzyme active sites were determined. As a result of these studies, a strong interaction between these compounds and the active sites of AChE enzyme was revealed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2018.03.017DOI Listing

Publication Analysis

Top Keywords

conventional microwave
8
docking studies
8
quinolone-triazole hybrids
8
active sites
8
microwave prompted
4
prompted synthesis
4
synthesis antioxidant
4
antioxidant anticholinesterase
4
anticholinesterase activity
4
activity screening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!