Background: In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing inaccurate period detection.

New Method: Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from each of the estimated cycle.

Results: The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with the scan duration reduced to half a minute. Additionally, the algorithm gives a figure of merit to evaluate the reliability of the detection accuracy.

Comparison With Existing Method: The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm fmrib_qrsdetect implemented in EEGLAB.

Conclusions: The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for ECG recordings for BCG artifact removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2018.03.017DOI Listing

Publication Analysis

Top Keywords

cycle detection
12
artifact removal
8
ecg waveform
8
bcg cycle
8
eeg data
8
bcg artifact
8
large eeg-fmri
8
detection accuracy
8
bcg
7
algorithm
7

Similar Publications

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Background: Growth hormone (GH) could improve the outcomes of fertilization and embryo transfer (IVF-ET) in patients with decreased ovarian reserve (DOR), but which age group will benefit the most has remained controversial. This study aims to explore the outcome of IVF-ET among differently aged patients with DOR treated with GH.

Methods: A total of 846 patients with DOR undergoing IVF-ET from May 2018 to June 2023 at the Reproductive Medicine Center of Sichuan Provincial Women's and Children's Hospital were prospectively enrolled.

View Article and Find Full Text PDF

Global warming, driven by greenhouse gas emissions from human activities, poses significant environmental challenges. Accurate greenhouse gas measurement data are crucial for effective emission reduction policies and international cooperation. The spaceborne integrated path differential absorption lidar offers high precision for monitoring global atmospheric carbon dioxide (CO) concentrations on both days and nights.

View Article and Find Full Text PDF

Accurately measuring inherent optical properties (IOPs) in water is fundamental for characterizing light transmission in aquatic environments and advancing our understanding of biogeochemical processes. Lidar, with its capability for continuous day-and-night observations and strong water penetration, holds great potential for detecting optical parameters in water. However, ocean lidar faces challenges in addressing ill-posed equations and mitigating the effects of multiple scattering when detecting IOPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!