Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

ACS Nano

School of Physics, State Key Lab for Mesoscopic Physics , Peking University, Beijing 100871 , China.

Published: April 2018

The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b01380DOI Listing

Publication Analysis

Top Keywords

chiral radiative
12
radiative ldos
12
deep-subwavelength scale
12
chiral
11
light-matter interactions
8
light-matter interaction
8
chiral electromagnetic
8
chiral light-matter
8
symmetric nanostructure
8
deep-subwavelength
5

Similar Publications

Azimuthal orientation and handedness dependence of the optical responses, accompanied by asymmetric transmission and asymmetric dichroism, were demonstrated on multilayers constructed with subwavelength periodic arrays of Babinet complementary miniarrays, illuminated by linearly and circularly polarized light. In case of single-sided illumination asymmetric optical responses were observed at the spectral location of maximal cross-polarization that is accompanied by radiative electric dipoles and weak, slowly-rotating in-plane magnetic dipoles on the nano-objects; where the outgoing waves are elliptically (almost circularly) polarized. The negative index material phenomenon was demonstrated, where the electric and magnetic dipoles overlap both spatially and spectrally.

View Article and Find Full Text PDF

Optically active persistent luminescent materials are highly promising for anticounterfeiting applications due to their distinct luminescent features and the ability to display unique optical polarization properties. Despite significant progress in the development of circularly polarized persistent luminescence (CPPL) materials, the fabrication of upconverted circularly polarized persistent luminescence (UC-CPPL) materials remains a considerable challenge. In this study, we present an efficient strategy to construct UC-CPPL materials by embedding upconversion nanoparticles (UCNPs) and phosphors into chiral nematic liquid crystals (N*LC).

View Article and Find Full Text PDF

Molecular Engineering of Xanthene Dyes with 3D Multimodal-Imaging Ability to Guide Photothermal Therapy.

Adv Healthc Mater

January 2025

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.

Phototheranostics integrates light-based diagnostic techniques with therapeutic interventions, offering a non-invasive, precise, and swift approach for both disease detection and treatment. The efficacy of this approach hinges on the multimodal imaging potential and photothermal conversion efficiency (PCE) of phototheranostic agents (PTAs). Despite the promise, crafting multifunctional phototheranostic organic small molecules brims with challenges.

View Article and Find Full Text PDF

Planar Chiral Charge-Transfer Cyclophanes: Convenient Synthesis, Circularly Polarized Light-Responsive Photothermal Conversion and Supramolecular Chiral Assembly.

Angew Chem Int Ed Engl

January 2025

College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China.

We report herein a series of macrocycles in which the densely π-stacked charge-transfer (CT) donor/acceptor with naphthalenediimides (NDIs) or perylene diimide (PDI) as acceptor moiety pairing various donor moieties are locked by covalent bond. The X-ray crystallography of C8BDT-NDI reveals a short intramolecular π-stacking distance around 3.4 Å and the existence of intermolecular donor/acceptor π-stacking (3.

View Article and Find Full Text PDF

Chiral molecular materials able to emit circularly polarized luminescence (CPL) have attracted considerable interest in the last few decades, due to the potential of CP-light in a wide range of applications. While CP luminescent molecules with blue, green, and yellow emissions are now well-reported, NIR CPL from organic and organometallic compounds lags behind due to the dual challenge of promoting radiative deexcitation of the excited state in this low energy region while assuring a significant magnetic dipole transition moment, a prerequisite for generating CPL. Based on a versatile axially chiral arylisoquinoline ligand, we report the synthesis and chiroptical properties of chiral donor-acceptor platinum(ii) complexes displaying CPL that extends up to almost 900 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!