Colloidal probe atomic force microscopy (CP-AFM) can be used for measuring force curves between the colloidal probe and the substrate in a colloidal suspension. In the experiment, an oscillatory force curve reflecting the layer structure of the colloidal particles on the substrate is usually obtained. However, the force curve is not equivalent to the interfacial structure of the colloidal particles. In this paper, the force curve is transformed into the number density distribution of the colloidal particles as a function of the distance from the substrate surface using our newly developed transform theory. It is found by the transform theory that the interfacial stratification is enhanced by an increase in an absolute value of the surface potential of the colloidal particle, despite a simultaneous increase in a repulsive electrostatic interaction between the substrate and the colloidal particle. To elucidate the mechanism of the stratification, an integral equation theory is employed. It is found that crowding of the colloidal particles in the bulk due to the increase in the absolute value of the surface potential of the colloidal particle leads to pushing out some colloidal particles to the wall. The combined method of CP-AFM and the transform theory (the experimental-theoretical study of the interfacial stratification) is related to colloidal crystallization, glass transition, and aggregation on a surface. Thus, the combined method is important for developments of colloidal nanotechnologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b01082 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea.
Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.
View Article and Find Full Text PDFACS Nano
January 2025
Leibniz Institute of Polymer Research, Dresden 01069, Germany.
Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.
View Article and Find Full Text PDFDiscov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!