Immunophenotypic characteristics and karyotype analysis of bone marrow-derived mesenchymal stem cells of rabbits during in vitro cultivation.

Pol J Vet Sci

Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.

Published: December 2017

The aim of this study was to establish the immunophenotypic profile and karyotypic stability of bone marrow mesenchymal stem cells (MSCs) of rabbits at the early passages in vitro following the application of different methods of dissociation of cellular material. MSCs were obtained from the femur bone marrow of three clinically healthy rabbits under general anaesthesia. Bone marrow aspirate was seeded in Petri dishes and cultured in a CO2 incubator with 5% CO2 at 37.0oC using a standard procedure. Immunohistochemical detection of nuclear proteins, cytoskeletal proteins and cell adhesion were performed by immunohistochemical analysis and karyotype analysis of MSCs following the enzyme and chelating methods of dissociation of the cell monolayer. The results of the immunophenotypic analysis of rabbit bone marrow MSCs showed that at the first, seventh, twelfth, and eighteenth passages these cells express markers of mesenchymal, muscle, epithelial and nerve cells. The choice of the enzyme or chelating method of dissociation of a culture of rabbit mesenchymal stem cells affects their cytogenetic variability. Dissociation of the MSCs monolayer with ethylenediaminetetraacetic acid produces a cell culture with fewer quantitative and qualitative changes in the chromosome apparatus as compared to the enzyme method. Rabbit MSCs express markers of mesenchymal (vimentin, actin), muscle, epithelial and nerve (E-cadherin, N-cadherin) cells that are essential for differentiation of these cells. The chelating method of dissociation of a culture of rabbit mesenchymal stem cells, using ethylenediaminetetraacetic acid during cultivation, is more advantageous than the enzyme method of dissociation because it leads to less cytogenetic variability.

Download full-text PDF

Source
http://dx.doi.org/10.1515/pjvs-2017-0086DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
16
stem cells
16
bone marrow
16
method dissociation
12
karyotype analysis
8
cells
8
methods dissociation
8
enzyme chelating
8
express markers
8
markers mesenchymal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!