Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and nonradiative recombination centers. Here, self-catalyzed p-type GaAs nanowires (NWs) with a pure zinc blende (ZB) structure are first developed, and then a photodetector made from these NWs is fabricated. Due to the absence of stacking faults and suppression of large amount of defects with deep energy levels, the photodetector exhibits room-temperature high photoresponsivity of 1.45 × 10 A W and excellent specific detectivity (D*) up to 1.48 × 10 Jones for a low-intensity light signal of wavelength 632.8 nm, which outperforms previously reported NW-based photodetectors. These results demonstrate these self-catalyzed pure-ZB GaAs NWs to be promising candidates for optoelectronics applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201704429 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.
The strength-ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength-ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China.
TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
The interaction of defects has been proven effective in regulating the mechanical properties of structural materials, while its influence on the physicochemical performance of functional materials has been rarely reported. Herein, we synthesized Ag nanorods with dense stacking faults and investigated how the defect interaction affects the catalytic properties. We found that the stacking faults can couple with each other to form a unique structure of opposite atoms with extortionately high tensile strain.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct recycling technology can effectively solve the environmental pollution and resource waste problems caused by spent lithium-ion batteries. However, the repaired LiNiCoMnO (NCM) black mass by direct recycling technology shows an unsatisfactory cycle life, which is attributed to the formation of spinel/rock salt phases and rotational stacking faults caused by the in-plane and out-of-plane migration of transition metal (TM) atoms during charge/discharge. Herein, local lattice stress is introduced into the regenerated cathode during repair.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Physical Metallurgy and Materials Physics, RWTH Aachen University, 52056, Aachen, Germany.
Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo and SmCo are investigated as fundamental building blocks and compared them to the structurally related SmCo and SmCo phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!