A novel 3D interconnected NH4Fe0.6V2.4O7.4@C nanocomposite was in situ synthesized through a facile hydrothermal reaction at low temperature (98 °C), and its electrochemical performance as a cathode for sodium-ion batteries (SIBs) was investigated for the first time. Under the intercalation of Fe3+ and carbon-coating, as-prepared samples turned to 3D interconnected structures, which were composed of NH4Fe0.6V2.4O7.4 nanoparticles and carbon chains. The 3D interconnected NH4Fe0.6V2.4O7.4@0.5 wt%C nanocomposite exhibits a high discharge specific capacity of 306 mA h g-1 at a current density of 20 mA g-1 and a high-rate capacity of 130 mA h g-1 at 0.4 A g-1. The results of EIS and ex situ SEM indicated that the 3D interconnected NH4Fe0.6V2.4O7.4@0.5 wt%C nanocomposite possesses good electrical conductivity and structural stability. The ex situ XRD results suggest that NH4Fe0.6V2.4O7.4@0.5 wt%C undergoes a reversible insertion/de-insertion mechanism during a charge/discharge process. Our work demonstrates that the 3D interconnected NH4Fe0.6V2.4O7.4@C nanocomposite material could be considered as a potential cathode for sodium ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr09146jDOI Listing

Publication Analysis

Top Keywords

nh4fe06v24o74@05 wt%c
12
interconnected nh4fe06v24o74@c
8
nh4fe06v24o74@c nanocomposite
8
interconnected nh4fe06v24o74@05
8
wt%c nanocomposite
8
interconnected
6
nanocomposite
5
interconnected nhfevo@c
4
nhfevo@c nanocomposite
4
nanocomposite superior
4

Similar Publications

Isolate Specific Transcriptome Changes Exerted by Isavuconazole Treatment in Candida auris.

Mycopathologia

December 2024

Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.

The sudden emergence of multidrug- and pan-resistant Candida auris isolates, combined with limited treatment options, poses significant global challenges in healthcare settings. Combination based therapies are promising alternative options to overcome C. auris related infections, where echinocandin and isavuconazole (ISA) combinations may be an interesting and promising approach.

View Article and Find Full Text PDF

TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.

View Article and Find Full Text PDF

The mechanism of LQTS related CaM mutation E141G interfering with Ca1.2 channels function through its C-lobe.

J Physiol Biochem

December 2024

Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.

Mutations in the CALM1-3 genes, which encode calmodulin (CaM), have been reported in clinical cases of long QT syndrome (LQTS). Specifically, the CaM mutant E141G (CaM) in the variant CALM1 gene has been identified as a causative factor in LQTS. This mutation disrupts the normal Ca-dependent inactivation (CDI) function of Ca1.

View Article and Find Full Text PDF

Hepatocyte hopping is the hepatocyte-to-sinusoid-to-hepatocyte shuttling that increases the efficiency of hepatic elimination of xenobiotics. This phenomenon is mediated efflux of hepatic metabolites by Mrp3 and reuptake by Oatp transporters in sequential hepatocytes until eventual biliary efflux by Mrp2. Sorafenib-glucuronide (SFB-G), the major metabolite of sorafenib (SFB), undergoes hepatocyte hopping, leading to efficient biliary elimination.

View Article and Find Full Text PDF

GH4169 alloy, a nickel-based superalloy known for its excellent high temperature resistance, corrosion resistance, mechanical properties, and high-temperature tribological properties, is widely used in industrial applications, such as in gas turbines for space shuttles and rocket engines. This study addresses the issue of electrolyte product residue in the electrochemical machining process of a GH4169 alloy by utilizing a CHNaO-containing NaNO new mixed electrolyte. Comparative investigations of the electrochemical behavior and electrolyte product removal mechanisms at different concentrations of CHNaO additive in NaNO solutions were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!