The pure rotational spectrum of the AlC2 radical (X[combining tilde]2A1) has been measured using Fourier transform microwave/millimeter-wave (FTMmmW) techniques in the frequency range 21-65 GHz. This study is the first high-resolution spectroscopic investigation of this molecule. AlC2 was created in a supersonic jet from the reaction of aluminum, generated by laser ablation, with a mixture of CH4 or HCCH, diluted in argon, in the presence of a DC discharge. Three transitions (NKa,Kc = 101 → 000, 202 → 101, and 303 → 202) were measured, each consisting of multiple fine/hyperfine components, resulting from the unpaired electron in the species and the aluminum-27 nuclear spin (I = 5/2). The data were analyzed using an asymmetric top Hamiltonian and rotational, fine structure, and hyperfine constants determined. These parameters agree well with those derived from previous theoretical calculations and optical spectra. An r0 structure of AlC2 was determined with r(Al-C) = 1.924 Å, r(C-C) = 1.260 Å, and θ(C-Al-C) = 38.2°. The Al-C bond was found to be significantly shorter than in other small, Al-bearing species. The Fermi contact term established in this work indicates that the unpaired electron in the valence orbital has considerable 3pza1 character, suggesting polarization towards the C2 moiety. A high degree of ionic character in the molecule is also evident from the quadrupole coupling constant. These results are consistent with a T-shaped geometry and an Al+C2- bonding scheme. AlC2 is a possible interstellar molecule that may be present in the circumstellar envelopes of carbon-rich AGB stars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp08613j | DOI Listing |
Acta Ortop Mex
January 2025
Universidade de Ribeirao Preto Campus Guarujá. Guarujá (SP), Brazil.
The iliotibial band originates from the iliac crest and the hip joint capsule, extending along the entire lateral surface until it inserts onto tuberculum anterolateralis tibiae on the anterolateral tibia. It acts as an agonist of the anterior cruciate ligament. In short, the iliotibial band primarily contributes to the lateral stabilization of the knee joint.
View Article and Find Full Text PDF3D Print Med
January 2025
Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W (163), Montréal, QC, H3A 0C3, Canada.
Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices.
View Article and Find Full Text PDFNano Lett
January 2025
Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea.
We demonstrate the reversible control of interactions between a local molecular spin, hosted within an iron phthalocyanine (FePc) molecule, and the conduction electrons of a supporting Au(111) surface. Using the tip of a scanning tunneling microscope, we deliberately and reversibly manipulate the adsorption configuration of the molecule relative to the underlying substrate lattice. Different rotation configurations lead to noticeable changes in the differential conductance measured on the FePc molecules.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, United States.
Combustion and pyrolysis processes of allene and propyne are known to involve radicals with the structural formula CH, the most stable of which is the classic resonance-stabilized allyl radical. In addition to allyl, four other isomers of CH are possible: the propene derivatives -1-propenyl, -1-propenyl, and 2-propenyl, as well as the cyclopropane derivative cyclopropyl. Among these 5 species, the allyl radical has been extensively studied both theoretically and spectroscopically; however, little is known about the spectroscopy of the cyclopropyl radical, and virtually no experimental spectroscopic data are available for the remaining three.
View Article and Find Full Text PDFMicrosc Microanal
January 2025
Université de Lorraine, CNRS, Arts et Métiers, LEM3, Metz 57070, France.
Characterizing threading dislocations (TDs) in gallium nitride (GaN) semiconductors is crucial for ensuring the reliability of semiconductor devices. The current research addresses this issue by combining two techniques using a scanning electron microscope, namely electron channeling contrast imaging (ECCI) and high-resolution electron backscattered diffraction (HR-EBSD). It is a comparative study of these techniques to underscore how they perform in the evaluation of TD densities in GaN epitaxial layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!