Aim: The purpose of this review is to represent acids that can be used as surface etchant before adhesive luting of ceramic restorations, placement of orthodontic brackets or repair of chipped porcelain restorations. Chemical reactions, application protocol, and etching effect are presented as well.
Study Selection: Available scientific articles published in PubMed and Scopus literature databases, scientific reports and manufacturers' instructions and product information from internet websites, written in English, using following search terms: "acid etching, ceramic surface treatment, hydrofluoric acid, acidulated phosphate fluoride, ammonium hydrogen bifluoride", have been reviewed.
Results: There are several acids with fluoride ion in their composition that can be used as ceramic surface etchants. The etching effect depends on the acid type and its concentration, etching time, as well as ceramic type. The most effective etching pattern is achieved when using hydrofluoric acid; the numerous micropores and channels of different sizes, honeycomb-like appearance, extruded crystals or scattered irregular ceramic particles, depending on the ceramic type, have been detected on the etched surfaces.
Conclusion: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5874387 | PMC |
http://dx.doi.org/10.3889/oamjms.2018.147 | DOI Listing |
Nanoscale
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.
The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.
View Article and Find Full Text PDFInorg Chem
January 2025
Zhejiang Carbon Neutral Innovation Institute and Moganshan Institute of ZJUT at Deqing, Zhejiang University of Technology, Hangzhou 310014, China.
The electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) has been deeply investigated. However, developing a durable electrocatalyst for fast production of FDCA at low potentials remains a challenge. Herein, we report NiP-NiSe heterostructure nanosheet arrays as efficient electrocatalysts for HMF electrooxidation.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
The development of highly stable and strongly active electrode materials for sodium-ion batteries (SIBs) and overall water splitting (OWS) is critical in sustainable energy storage and conversion systems. Here, a new electrode material N-Fe-C@NbCT is introduced, with a layered sandwich structure consisting of N-doping Fe-MOF derived-nanorods (Fe-C) and NbCT MXenes. Specifically, NbCT obtained by etching NbAlC with HF acid is used as the main body to construct the layered sandwich structure with Fe-C as the filler.
View Article and Find Full Text PDFDent Mater
December 2024
Graduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil; Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre 2492, Brazil. Electronic address:
Objectives: To evaluate the self-etch bonding potential of universal adhesive systems with varying acidic compositions by analyzing the wettability properties, topographical change, and microshear bond strength (µSBS) to enamel.
Methods: Eight universal adhesives were tested: All-Bond Universal (Bisco), Ambar Universal (FGM), Gluma Bond Universal (Kulzer), OptiBond Universal (Kerr), Peak Universal Bond (Ultradent), Prime&Bond Universal (Dentsply), Singlebond Universal (3 M ESPE), and Tetric N-Bond Universal (Ivoclar). Bovine incisors were prepared and treated with each adhesive according to the manufacturer's instructions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!