Bloom syndrome (BS) is a rare, autosomal recessive genetic disorder characterized by short stature, a skin rash associated with sun exposure, and an elevated likelihood of developing cancers of essentially all types, beginning at an early age. Cancer is the leading cause of death for persons with BS, and its early onset results in a reported median lifespan of <30 years. With fewer than 300 documented cases since BS was first described in 1954, its rarity has challenged progress in advancing both the care of and the cure for persons with BS. Presently, there are no known clinically actionable targets specific to persons with this cancer predisposition syndrome, despite the fact that standard cancer treatments are often contraindicated or must be substantially modified for persons with BS. Herein, Zachary Rogers recounts his experience as a cancer patient with BS contemplating a substantially customized chemotherapy regimen that highlights the need for development of individualized treatments in the BS community. We also outline a patient-centered research and community action road map with the goal of improving and prolonging the lives of persons with Bloom syndrome, including the facilitation of precision medicine development specific to this condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880269 | PMC |
http://dx.doi.org/10.1101/mcs.a002816 | DOI Listing |
Pediatr Pulmonol
December 2024
Department of Pediatrics & Kawasaki Disease Research Center, University of California San Diego (UCSD) & Rady Children's Hospital, San Diego, California, USA.
Importance: There is growing understanding that Social Determinants of Health (SDH) impact on the outcomes of different pediatric conditions. We aimed to determine whether SDH affect the severity of MIS-C.
Design: Retrospective cohort study, 2021-2023.
Methods Mol Biol
December 2024
Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.
View Article and Find Full Text PDFOphthalmic Surg Lasers Imaging Retina
December 2024
PLoS Genet
December 2024
Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America.
TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates.
View Article and Find Full Text PDFHarmful Algae
January 2025
School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!