Neuroblastoma is a pediatric cancer of the sympathetic nervous system where amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with -amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation and tumorigenesis Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis. Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-17-3034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!