Attenuation correction for positron-emission tomography (PET)/magnetic resonance (MR) hybrid imaging systems and dose planning for MR-based radiation therapy remain challenging due to insufficient high-energy photon attenuation information. We present a novel approach that uses the learned nonlinear local descriptors and feature matching to predict pseudo computed tomography (pCT) images from T1-weighted and T2-weighted magnetic resonance imaging (MRI) data. The nonlinear local descriptors are obtained by projecting the linear descriptors into the nonlinear high-dimensional space using an explicit feature map and low-rank approximation with supervised manifold regularization. The nearest neighbors of each local descriptor in the input MR images are searched in a constrained spatial range of the MR images among the training dataset. Then the pCT patches are estimated through k-nearest neighbor regression. The proposed method for pCT prediction is quantitatively analyzed on a dataset consisting of paired brain MRI and CT images from 13 subjects. Our method generates pCT images with a mean absolute error (MAE) of 75.25 ± 18.05 Hounsfield units, a peak signal-to-noise ratio of 30.87 ± 1.15 dB, a relative MAE of 1.56 ± 0.5% in PET attenuation correction, and a dose relative structure volume difference of 0.055 ± 0.107% in , as compared with true CT. The experimental results also show that our method outperforms four state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2018.2790962DOI Listing

Publication Analysis

Top Keywords

nonlinear local
12
local descriptors
12
mri data
8
feature matching
8
learned nonlinear
8
attenuation correction
8
pct images
8
images
5
predicting image
4
image mri
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!