Purpose: To report the commissioning and validation of deformable image registration(DIR) software for adaptive contouring.
Methods: DIR (SmartAdapt®v13.6) was validated using two methods namely contour propagation accuracy and landmark tracking, using physical phantoms and clinical images of various disease sites. Five in-house made phantoms with various known deformations and a set of 10 virtual phantoms were used. Displacement in lateral, anterio-posterior (AP) and superior-inferior (SI) direction were evaluated for various organs and compared with the ground truth. Four clinical sites namely, brain (n = 5), HN (n = 9), cervix (n = 18) and prostate (n = 23) were used. Organs were manually delineated by a radiation oncologist, compared with the deformable image registration (DIR) generated contours. 3D slicer v4.5.0.1 was used to analyze Dice Similarity Co-efficient (DSC), shift in centre of mass (COM) and Hausdorff distances Hf.
Results: Mean (SD) DSC, Hf (mm), Hf (mm) and COM of all the phantoms 1-5 were 0.84 (0.2) mm, 5.1 (7.4) mm, 1.6 (2.2) mm, and 1.6 (0.2) mm respectively. Phantom-5 had the largest deformation as compared to phantoms 1-4, and hence had suboptimal indices. The virtual phantom resulted in consistent results for all the ROIs investigated. Contours propagated for brain patients were better with a high DSC score (0.91 (0.04)) as compared to other sites (HN: 0.84, prostate: 0.81 and cervix 0.77). A similar trend was seen in other indices too. The accuracy of propagated contours is limited for complex deformations that include large volume and shape change of bladder and rectum respectively. Visual validation of the propagated contours is recommended for clinical implementation.
Conclusion: The DIR algorithm was commissioned and validated for adaptive contouring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2018.01.013 | DOI Listing |
J Imaging Inform Med
January 2025
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.
Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Radiodiagnosis Department, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Postseizure brain changes on imaging are well-known facts. Many times, oedematous brain changes can mimic ischaemic stroke. Crossed cerebellar diaschisis refers to a depression in metabolism, affecting the cerebellar hemisphere due to contralateral supratentorial abnormalities.
View Article and Find Full Text PDFComput Biol Med
January 2025
SCOPIA Research Group, University of the Balearic Islands, Dpt. of Mathematics and Computer Science, Crta. Valldemossa, Km 7.5, Palma, E-07122, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, E-07122, Spain; Laboratory for Artificial Intelligence Applications at UIB (LAIA@UIB), Palma, E-07122, Spain; Artificial Intelligence Research Institute of the Balearic Islands (IAIB), Palma, E-07122, Spain. Electronic address:
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis.
View Article and Find Full Text PDFEur J Orthop Surg Traumatol
January 2025
Cedars-Sinai Medical Centre, Los Angeles, USA.
Objective: Accurate rotational reduction following tibial shaft fracture fixation is absent in up to 36% of cases yet may be critical for lower extremity biomechanics. The objective of this cadaveric study was to compare the results of freehand methods of reduction with software-assisted reduction.
Methods: Four fellowship-trained orthopaedic trauma surgeons attempted rotational correction in a cadaveric model with fluoroscopic assistance (without radiographic visualization of the fracture site) using (1) their method of choice (MoC) and (2) software assistance (SA).
Biomed Phys Eng Express
January 2025
Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.
U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!