To get physical insight into the 3D transfer characteristics of interference microscopy at high numerical apertures we study reflecting rectangular grating structures. In general, the height obtained from phase information seems to be reduced, whereas height values resulting from coherence scanning sometimes seem to be systematically overestimated. Increasing the numerical aperture of an interference microscope broadens the spectra of the resulting interference signals, thus offering a broad variety of wavelength contributions to be analyzed. If phase analysis of a measured far-field interference wavefront is performed at very short wavelengths the periodical profiles obtained from coherence scanning and phase shifting analysis differ only by the measured amplitude. However, at longer wavelength there is a 180° phase shift of the measured profiles obtained from phase analysis compared to coherence peak analysis. Increasing the evaluation wavelength improves the lateral resolution since the long wavelength contributions are related to electromagnetic waves of high angles of incidence. This behavior is to the best of our knowledge not documented in literature so far. It was first observed experimentally and could be confirmed by simulation results obtained from either Kirchhoff diffraction theory or an extended Richards-Wolf model developed in our group. Compared to original input profiles used for the simulation the profiles obtained from phase evaluation correspond quite well at longer wavelength, whereas the results obtained from coherence peak analysis are typically inverted with respect to height.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.007376DOI Listing

Publication Analysis

Top Keywords

coherence scanning
12
scanning phase
8
interference microscopy
8
lateral resolution
8
wavelength contributions
8
phase analysis
8
longer wavelength
8
profiles phase
8
coherence peak
8
peak analysis
8

Similar Publications

Introduction: We explored associations between measurements of the ocular choroid microvasculature and Alzheimer's disease (AD) risk.

Methods: We measured the choroidal vasculature appearing in optical coherence tomography (OCT) scans of 69 healthy, mid-life individuals in the PREVENT Dementia cohort. The cohort was prospectively split into low-, medium-, and high-risk groups based on the presence of known risk factors (apolipoprotein E [] ε4 genotype and family history of dementia [FH]).

View Article and Find Full Text PDF

Conventional scanned optical coherence tomography (OCT) suffers from the frame rate/resolution tradeoff, whereby increasing image resolution leads to decreases in the maximum achievable frame rate. To overcome this limitation, we propose two variants of machine learning (ML)-based adaptive scanning approaches: one using a ConvLSTM-based sequential prediction model and another leveraging a temporal attention unit (TAU)-based parallel prediction model for scene dynamics prediction. These models are integrated with a kinodynamic path planner based on the clustered traveling salesperson problem to create two versions of ML-based adaptive scanning pipelines.

View Article and Find Full Text PDF

The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber.

View Article and Find Full Text PDF

Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.

Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).

View Article and Find Full Text PDF

Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!