Stress can either strengthen coping strategies or enhance the risk of depression and anxiety. Synaptic plasticity is one of the key brain functions that can be affected by stress. We have previously shown that early-life stress in the form of maternal separation (MS) impairs functional synaptic plasticity in the medial prefrontal cortex (mPFC), i.e., long-term potentiation (LTP), in adolescent rats. It has been postulated that a previous experience of prolonged stress can modify the response to a subsequent acute stress challenge and influence coping strategies. Therefore, in the present study, we examined how previous MS experience influenced acute stress-induced changes in the LTP and expression of genes and proteins engaged in synaptic plasticity in the mPFC of adolescent rats. To mimic acute stress, we applied acute injections of corticosterone (CORT) and its vehicle (VEH). In control rats, acute CORT injection enhanced LTP in the mPFC. In contrast, MS rats generally exhibited an impairment of LTP that was not further affected by CORT. Moreover, for many studied parameters, such as induction of cFos and Arc mRNA and protein and activation of BDNF, GDNF and NCAM mRNA, MS rats showed diminished, vague or absent responses to acute VEH/CORT compared with those of control rats. These results suggest that previous early-life stress experiences may induce adaptive plasticity within the mPFC, which influences the response to acute stress challenge and coping strategies in adolescents. Depending on the specific environmental context, this phenomenon may lead to either future vulnerability or future resilience to stress-related psychopathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2018.03.038 | DOI Listing |
Neurosci Lett
December 2024
Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:
Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.
View Article and Find Full Text PDFMech Ageing Dev
December 2024
Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, 79430, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA. Electronic address:
Chronic sleep deprivation and lack of physical exercise may have detrimental effects on overall health, particularly in terms of brain health, with significant implications for cognitive function and well-being. This review explores the impact of chronic sleep deprivation and physical exercise on brain atrophy in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Drawing insights from 40 selected studies, the review synthesizes evidence on these lifestyle factors' correlations with neurodegenerative changes.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.
View Article and Find Full Text PDFSci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!