A tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 positively regulates drought stress tolerance.

Biochem Biophys Res Commun

Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architechture, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715, China. Electronic address:

Published: May 2018

Plant abiotic resistance in cultivated species features limited variability. Using genes of wild species serves as a valid approach for improving abiotic resistance of cultivated plants. In this study, we uncovered a previously uncharacterized proline-, lysine-, and glutamic-rich protein gene (SpPKE1), which was isolated from drought-resistant wild tomato species Solanum pennellii (LA0716). When M82, which is a drought-sensitive tomato cultivar, was engineered to overexpress SpPKE1, its tolerance under drought stress was significantly improved by the accumulation of more chlorophyll, proline, and limited malondialdehyde compared with that in RNA interference (RNAi)-suppression lines, which were more sensitive than the wild-type plants. Several ion transporter genes, abiotic-related transcriptional factors, and reactive oxygen species-scavenging genes were upregulated in PKE1 overexpression (OE) lines but downregulated in RNAi plants. OE of SpPKE1 enhanced drought tolerance in tobacco. Screening results of yeast two-hybrid protein-protein interaction revealed that SpPKE1 can bind to an F-box protein that plays an important role in plant drought resistance. We posited that PKE1 enhanced drought tolerance by modulating the expressions of stress-responsive genes and interacting with the F-box protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2018.03.222DOI Listing

Publication Analysis

Top Keywords

proline- lysine-
8
lysine- glutamic-rich
8
gene sppke1
8
drought stress
8
abiotic resistance
8
resistance cultivated
8
enhanced drought
8
drought tolerance
8
f-box protein
8
sppke1
5

Similar Publications

Changes in Growth and Metabolic Profile of Georgi in Response to Sodium Chloride.

Biology (Basel)

December 2024

Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.

Georgi is a valuable medicinal plant of the family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass.

View Article and Find Full Text PDF

The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.

View Article and Find Full Text PDF

Discovery of Titin and Its Role in Heart Function and Disease.

Circ Res

January 2025

Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).

This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.

View Article and Find Full Text PDF

Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS.

Biomed Chromatogr

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.

An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!