Hydroxamic acids (RC(O)NHOH) form a class of compounds that display interesting chemical and biological properties The chemistry of RC(O)NHOH) is associated with one- and two-electron oxidations forming the respective nitroxide radical (RC(O)NHO) and acyl nitroso (RC(O)N═O), respectively, which are relatively unstable species. In the present study, the kinetics and mechanism of the NO reaction with nitroxide radicals derived from acetohydroxamic acid, suberohydroxamic acid, benzohydroxamic acid, and suberoylanilide hydroxamic acid have been studied in alkaline solutions. Ionizing radiation was used to generate about equal yields of these radicals, demonstrating that the oxidation of the transient nitroxide radical by NO produces HNO and nitrite at about equal yields. The rate constant of NO reaction with the nitroxide radical derived from acetohydroxamic acid has been determined to be (2.5 ± 0.5) × 10 M s. This reaction forms a transient intermediate absorbing at 314 nm, which decays via a first-order reaction whose rate increases upon increasing the pH or the hydroxamic acid concentration. Transient intermediates absorbing around 314 nm are also formed during the oxidation of hydroxamic acids by HO catalyzed by horseradish peroxidase. It is shown that HNO is formed during the decomposition of these intermediates, and therefore, they are assigned to acyl nitroso compounds. This study provides for the first time a direct spectrophotometric detection of acyl nitroso compounds in aqueous solutions allowing the study of their chemistry and reaction kinetics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.8b02300DOI Listing

Publication Analysis

Top Keywords

nitroxide radical
16
acyl nitroso
16
reaction nitroxide
12
hydroxamic acids
12
radical derived
8
derived acetohydroxamic
8
acetohydroxamic acid
8
hydroxamic acid
8
equal yields
8
absorbing 314
8

Similar Publications

Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.

View Article and Find Full Text PDF

A one-pot, telescoped transformation of silyl ethers into cyanides that proceeds via silyl-ether oxidation mediated by nitroxyl-radical catalyst and [bis(trifluoroacetoxy)iodo]benzene followed by an imine formation-oxidation sequence using iodine and aqueous ammonia is reported. This transformation is effective for the site-selective transformation of benzylic and allylic silyl ethers in the presence of other silyl ethers. Using an -protected oxime and a catalytic amount of triflic acid instead of iodine/aqueous ammonia is also effective for cyanation.

View Article and Find Full Text PDF

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

A nitrosyl complex of Mn-porphyrinate, 1 has been synthesized and characterized. It was found to donate a nitroxyl anion (NO) to suitable acceptors in dichloromethane solution in the presence of visible light. The evolution of NO and the characteristic reaction with PPh in the presence of H confirms the NO/HNO donation.

View Article and Find Full Text PDF

Through extensive research, nitroxyl (HNO) has emerged as a newly recognized redox signal in plant developmental and stress responses. The interplay between nitric oxide (●NO) and HNO entails a complex network of signaling molecules and regulatory elements sensitive to the environment's specific redox conditions. However, functional implications for HNO in cell signaling require more detailed studies, starting with identifying HNO-level switches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!