Unlabelled: In vitro studies revealed that Porphyromonas gingivalis (Pg), a pathogen intimately associated with the onset and progression of periodontitis, is able to activate platelets, thus linking periodontal inflammation with the endangerment of vascular health. As wild-type Pg strains are characterized by major genetic heterogeneity, the commonness of platelet-activating Pg strains in periodontitis patients is unknown as of yet. Therefore, this study evaluated the platelet activation capacity of wild-type Pg isolates sampled from patients with aggressive periodontitis.
Methods: Extent and velocity of platelet aggregation were determined by light transmission aggregometry. Platelet surface expression of P-selectin was measured by flow cytometry, activation of p38 MAP kinase, and protein kinase C by Western blot using phospho-specific antibodies.
Results: Pg isolates displayed high variability regarding extent and velocity of platelet activation, as well as the involved activating pathways. Corresponding results were observed for platelet P-selectin expression, activation of p38 MAP kinase, or protein kinase C. Inhibitors of platelet immune receptor FcγRIIA and protease-activated receptors revealed several, diverging pathways of activation. Some isolates induced platelet aggregation even in the presence of potent therapeutical platelet inhibitors.
Conclusions: Chronic bacteremia involving specific, platelet-activating Pg strains may constitute a substantial hazard for the integrity of cardiovascular health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jcpe.12895 | DOI Listing |
Drug Deliv Transl Res
January 2025
Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.
Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Neurosurgery Center, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Ticagrelor has become the standard drug for the treatment of intracranial aneurysms (IAs) with flow diverters (FDs), but the dosage has not been standardized. The effect of platelet function on clinical and imaging prognosis remains unclear. This study aimed to show the effects of different doses of ticagrelor and platelet aggregation function on the clinical and imaging prognosis after FDs treatment of aneurysms.
View Article and Find Full Text PDFIntroduction: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects various body systems, including the skin and facial features. Estrogen promotes lupus in human and mouse models of SLE. In this study, we conducted an in vivo study to investigate the relationship between two estrogen receptors (ERα and ERβ) and platelet-activating factor acetylhydrolase (PAF-AH) on the symptoms of SLE.
View Article and Find Full Text PDFBlood
January 2025
Medical University of Vienna, Vienna, Austria.
In thrombosis and hemostasis, the formation of a platelet-fibrin thrombus or clot is a highly controlled process that varies, depending on the pathological context. Major signaling pathways in platelets are well established. However, studies with genetically modified mice have identified the contribution of hundreds of additional platelet-expressed proteins in arterial thrombus formation and bleeding.
View Article and Find Full Text PDFBlood
January 2025
Cleveland Clinic, Cleveland, Ohio, United States.
Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!