Stretchable Electronic Wearable Motion Sensors Delineate Signatures of Human Motion Tasks.

ASAIO J

Departments of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, Arizona.

Published: April 2019

Digital tracking of human motion offers the potential to monitor a wide range of activities detecting normal versus abnormal performance of tasks. We examined the ability of a wearable, conformal sensor system, fabricated from stretchable electronics with contained accelerometers and gyroscopes, to specifically detect, monitor, and define motion signals and "signatures," associated with tasks of daily living activities. The sensor system was affixed to the dominant hand of healthy volunteers (n = 4) who then completed four tasks. For all tasks examined, motion data could be captured, monitored continuously, uploaded to the digital cloud, and stored for further analysis. Acceleration and gyroscope data were collected in the x-, y-, and z-axes, yielding unique patterns of component motion signals for each task studied. Upon analysis, low-frequency (<10 Hz) tasks (walking, drinking from a mug, and opening a pill bottle) showed low intersubject variability (<0.3g difference) and low interrepetition variability (<0.1g difference) when comparing the acceleration of each axis for a single task. High-frequency (≥10 Hz) activity (brushing teeth) yielded low intersubject variability of peak frequencies in acceleration of each axis. Each motion task was readily distinguishable and identifiable (with ≥70% accuracy) by independent observers from motion signatures alone, without the need for direct visual observation. Stretchable electronic technologies offer the potential to provide wireless capture, tracking, and analysis of detailed directional components of motion for a wide range of individual activities and functional status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128668PMC
http://dx.doi.org/10.1097/MAT.0000000000000784DOI Listing

Publication Analysis

Top Keywords

human motion
8
tasks examined
8
sensor system
8
motion signals
8
motion
6
tasks
5
stretchable electronic
4
electronic wearable
4
wearable motion
4
motion sensors
4

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

COVID-19 has extensively affected the health-care organization with varying impact on different medical specialties. Long term ICU admission is associated with a less familiar complication: the formation of heterotopic ossifications (HO). In this case report we would like to emphasize the unrecognized burden of the coronavirus pandemic in patient care from the perspective of the orthopedic surgeon.

View Article and Find Full Text PDF

Predicting the location of moving objects in noisy environments is essential to everyday behavior, like when participating in traffic. Although many objects provide multisensory information, it remains unknown how humans use multisensory information to localize moving objects, and how this depends on expected sensory interference (e.g.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Biomechanical study of elbow joint: different stages after the elbow anterior capsule injury.

Acta Bioeng Biomech

September 2024

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education.

: Elbow contracture is a common complication post-elbow trauma, the biomechanical environment after anterior capsule injury was complex. This study aimed to use a finite element model to investigate the biomechanical environment within elbow capsule and its surrounding tissues at various stages after anterior capsule injury. : A finite element model of the elbow joint, incorporating muscle activation behavior, was developed to simulate elbow flexion under normal condition (no injury) and at 2, 4, 6 and 8 weeks following anterior joint capsular injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!