Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional metabolomic methods include extensive sample preparation steps and long analytical run times, increasing the likelihood of processing artifacts and limiting high throughput applications. We present here in vitro liquid extraction surface analysis mass spectrometry (ivLESA-MS), a variation on LESA-MS, performed directly on adherent cells grown in 96-well cell culture plates. To accomplish this, culture medium was aspirated immediately prior to analysis, and metabolites were extracted using LESA from the cell monolayer surface, followed by nano-electrospray ionization and MS analysis in negative ion mode. We applied this platform to characterize and compare lipidomic profiles of multiple breast cancer cell lines growing in culture (MCF-7, ZR-75-1, MDA-MB-453, and MDA-MB-231) and revealed distinct and reproducible lipidomic signatures between the cell lines. Additionally, we demonstrated time-dependent processing artifacts, underscoring the importance of immediate analysis. ivLESA-MS represents a rapid in vitro metabolomic method, which precludes the need for quenching, cell harvesting, sample preparation, and chromatography, significantly shortening preparation and analysis time while minimizing processing artifacts. This method could be further adapted to test drugs in vitro in a high throughput manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196362 | PMC |
http://dx.doi.org/10.1021/acs.analchem.8b00530 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!