Designer nuclease-mediated gene correction via homology-directed repair in an in vitro model of canine hemophilia B.

J Gene Med

Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.

Published: May 2018

Background: Gene correction at specific target loci provides a powerful strategy for overcoming genetic diseases. In the present study, we aimed to use an in vitro model for canine hemophilia B containing a single point mutation in the catalytic domain of the canine coagulation factor IX (cFIX) gene. To correct the defective gene via homology-directed repair (HDR), we designed transcription-activator like effector nucleases and clustered regularly interspaced short palindromic repeats including Cas9 (CRISPR/Cas9) for introduction of double-strand breaks at the mutation site.

Methods: To generate a stable cell line containing the mutated cFIX locus, a 2-kb genomic DNA fragment derived from a hemophilia B dog was amplified and integrated utilizing the phiC31 integrase system. Designer nucleases were assembled and cloned into vectors for constitutive and inducible expression. To detect mutations, insertions and deletions, and HDR events after nuclease treatment T7E1 assays, an amplification-refractory mutation system-quantitative polymerase chain reaction and pyrosequencing were performed.

Results: To perform HDR correction experiments, we established a cell line carrying the mutated cFIX locus. In HDR approaches we either explored a wild-type or an optimized cFIX sequence and we found that our modified HDR cassette showed higher gene correction efficiencies of up to 6.4%. Furthermore, we compared inducible and constitutive designer nuclease expression systems and found that the inducible system resulted in comparable HDR efficiencies.

Conclusions: In conclusion, the present study demonstrates the potential of this strategy for gene therapeutic approaches in vitro and in a canine model for hemophilia B.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.3020DOI Listing

Publication Analysis

Top Keywords

gene correction
12
homology-directed repair
8
vitro model
8
model canine
8
canine hemophilia
8
mutated cfix
8
cfix locus
8
gene
6
hdr
6
designer nuclease-mediated
4

Similar Publications

Correction: Tian et al. Genome-Wide Identification of the DnaJ Gene Family in Citrus and Functional Characterization of in Response to Citrus Huanglongbing. 2024, , 11967.

Int J Mol Sci

January 2025

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China.

In the original publication [...

View Article and Find Full Text PDF

A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.

View Article and Find Full Text PDF

During all periods of male ontogenesis, physiological processes responsible for the correct functioning of reproductive organs and spermatogenesis are under the influence of various factors (neuro-humoral, genetic, and paratypical). Recently, the attention of researchers has increasingly turned to the study of epigenetic factors. In scientific publications, one can increasingly find references to the direct role of microRNAs, small non-coding RNAs involved in post-transcriptional regulation of gene expression, in the processes of development and functioning of reproductive organs.

View Article and Find Full Text PDF

Polyethylene glycol (PEG), especially at high molecular weights, is highly soluble in water, and these solutions have reduced water potential. It is convenient to use PEG in hydroponics (liquid nutrient solution) for experiments with plants. However, some authors have been found to describe the application of PEG to plants incorrectly, such as drought, dehydration, osmotic, or water stresses, which can mislead readers.

View Article and Find Full Text PDF

Background: Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.

Results: BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!