A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High Frequency Data Exposes Nonlinear Seasonal Controls on Dissolved Organic Matter in a Large Watershed. | LitMetric

AI Article Synopsis

  • The study examined a five-year time series of fluorescent dissolved organic matter (fDOM) data near the Connecticut River, focusing on its dynamics across different seasons and at a higher temporal resolution than previous research.
  • Researchers found that fDOM responses to river discharge were significantly stronger in the summer compared to winter, indicating a complex relationship influenced by environmental factors like temperature.
  • The results revealed that hydrophobic organic acid (HPOA) concentrations, which correlated with discharge, were mainly responsible for changes in fDOM, while hydrophilic substances remained stable, suggesting that both soil temperature and the position of the water table impacted these organic matter dynamics.

Article Abstract

We analyzed a five year, high frequency time series generated by an in situ fluorescent dissolved organic matter (fDOM) sensor installed near the Connecticut River's mouth, investigating high temporal resolution DOM dynamics in a larger watershed and longer time series than previously addressed. We identified a gradient between large, saturating summer fDOM responses to discharge and linear, subdued responses during colder months. Seasonal response patterns were not consistent with multiple linear regression. Alternatively, we binned measurements across the yearly cycle using environmental indices, such as temperature, and applied moving regression, a novel approach which produced superior fits to calendar day binning. Spatially averaged watershed soil temperature at 10 cm was the best overall index of discharge-fDOM response. DOM fractionation showed fDOM was primarily a surrogate for hydrophobic organic acid (HPOA) concentrations. HPOAs were highly correlated with discharge, but hydrophilics (HPIs) were not. Discharge dependent DOM concentrations driven by the HPOA fraction may be controlled by soil temperature and water table position relative to organic and mineral soil horizons. HPI concentrations were correlated with average watershed soil temperature at 10 cm but were rather stationary throughout the year, further indicating a consistent groundwater source for this nonfluorescent DOM. We present a resolved subseasonal empirical model of DOM concentrations and fluxes, showing that riverine DOM flux and quality depend heavily on seasonal terrestrial carbon dynamics and hydrologic flow paths. High frequency monitoring reveals readily discernible patterns demonstrating that upland biogeochemical signals are maintained even at this large watershed scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b04579DOI Listing

Publication Analysis

Top Keywords

high frequency
12
soil temperature
12
dissolved organic
8
organic matter
8
large watershed
8
time series
8
watershed soil
8
dom concentrations
8
dom
6
watershed
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: