The photoinduced structural dynamics of the atomic wire system on the Si(111)-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating [Formula: see text] reconstructed low temperature phase to a metastable metallic [Formula: see text] reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots. From a comparison with the structural response of the high temperature [Formula: see text] phase, we conclude that electron-phonon coupling is responsible for the slow energy transfer from the excited electron system to the lattice. The significant difference in timescales is evidence that the photoinduced structural transition is non-thermally driven.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869048 | PMC |
http://dx.doi.org/10.1063/1.5016619 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom.
A value is conventionally interpreted either as a) the probability by chance of obtaining more extreme results than those observed or b) a tool for declaring significance at a prespecified level. Both approaches carry difficulties: b) does not allow users to make inferences based on the data in hand, and is not rigorously followed by researchers in practice, while (a) is not meaningful as an error rate. Although values retain an important role, these shortcomings are likely to have contributed significantly to the scientific reproducibility crisis.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
The use of winglet devices is an efficient technique for enhancing aerodynamic performance. This study investigates the effects of winglet cant angles on both the aerodynamics and aeroacoustics of a commercial wing, comparing them to other significant parameters using a parametric analysis. A Full Factorial Design method is employed to generate a matrix of experiments, facilitating a detailed exploration of flow physics, with lift-to-drag ratio (L/D) and the integral of Acoustic Power Level (APL) as the primary representatives of aerodynamic and acoustic performance, respectively.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
Background: Alzheimer's disease (AD) is characterized by a decline in cognitive abilities, with cognitive resilience (CR) denoting the capacity of AD patients to withstand such declines. Prior studies have linked the segregation of functional networks with cognitive resilience in AD. The emergence of dynamic functional connectivity (dFC) is a notable advancement in the assessment of brain network dynamics of CR features in AD.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India.
Self-organized contact line instabilities (CLI) of a macroscopic liquid crystal (LC) droplet can be an ingenious pathway to generate a large collection of miniaturized LC drops. For example, when a larger drop of volatile solvent (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!