Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2018.02.022DOI Listing

Publication Analysis

Top Keywords

gene cluster
20
metabolic maturation
12
muscle stem
12
skeletal muscles
12
dlk1-dio3 gene
12
stem cell
8
differentiation achieved
8
increased mitochondrial
8
mitochondrial activity
8
role mir-1/133a
8

Similar Publications

Background: The breakthrough discovery of novel biomarkers with prognostic and diagnostic value enables timely medical intervention for the survival of patients diagnosed with gastric cancer (GC). Typically, in studies focused on biomarker analysis, highly connected nodes (hubs) within the protein-protein interaction network (PPIN) are proposed as potential biomarkers. However, this study revealed an unexpected finding following the clustering of network nodes.

View Article and Find Full Text PDF

Flagella are essential for motility and pathogenicity in many bacteria. The main component of the flagellar filament, flagellin (FliC), often undergoes post-translational modifications, with glycosylation being a common occurrence. In PAO1, the b-type flagellin is -glycosylated with a structure that includes a deoxyhexose, a phospho-group, and a previous unknown moiety.

View Article and Find Full Text PDF

The developmental theory of ageing proposes that age-specific decline in the force of natural selection results in suboptimal levels of gene expression in adulthood, leading to functional senescence. This theory explicitly predicts that optimising gene expression in adulthood can ameliorate functional senescence and improve fitness. Reduced insulin/IGF-1 signalling (rIIS) extends the reproductive lifespan of Caenorhabditis elegans at the cost of reduced reproduction.

View Article and Find Full Text PDF

Early diagnosis and disease management based on risk stratification have a very positive impact on colon adenocarcinoma (COAD) prognosis. It is of positive significance to further explore risk stratification of COAD patients and identify predictive molecular biomarkers. PANoptosis is defined as a form of inflammatory cell death regulated by PANoptosome, with common features of pyroptosis, apoptosis and necroptosis.

View Article and Find Full Text PDF

Mycobacidin is an antitubercular antibiotic structurally composed of a sulfur-containing 4-thiazolidinone ring, yet its biosynthesis including the mechanism of sulfur incorporation has remained an open question since its discovery in 1952. In this study, the mycobacidin biosynthetic gene cluster is identified from soil-dwelling , and the corresponding biosynthetic pathway starting with 7-oxoheptanoate is characterized. The radical SAM enzyme MybB catalyzes two sulfur insertion reactions, thereby bridging C and C to complete the 4-thiazolidinone heterocycle as the final step in mycobacidin maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!