Various Signaling Pathways in Multiple Myeloma Cells and Effects of Treatment on These Pathways.

Clin Lymphoma Myeloma Leuk

Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran. Electronic address:

Published: May 2018

Multiple myeloma (MM) results from malignancy in plasma cells and occurs at ages > 50 years. MM is the second most common hematologic malignancy after non-Hodgkin lymphoma, which constitutes 1% of all malignancies. Despite the great advances in the discovery of useful drugs for this disease such as dexamethasone and bortezomib, it is still an incurable malignancy owing to the development of drug resistance. The tumor cells develop resistance to apoptosis, resulting in greater cell survival, and, ultimately, develop drug resistance by changing the various signaling pathways involved in cell proliferation, survival, differentiation, and apoptosis. We have reviewed the different signaling pathways in MM cells. We reached the conclusion that the most important factor in the drug resistance in MM patients is caused by the bone marrow microenvironment with production of adhesion molecules and cytokines. Binding of tumor cells to stromal cells prompts cytokine production of stromal cells and launches various signaling pathways such as Janus-activated kinase/signal transduction and activator of transcription, Ras/Raf/MEK/mitogen-activated protein kinase, phosphatidyl inositol 3-kinase/AKT, and NF-KB, which ultimately lead to the high survival rate and drug resistance in tumor cells. Thus, combining various drugs such as bortezomib, dexamethasone, lenalidomide, and melphalan with compounds that are not common, including CTY387, LLL-12, OPB31121, CNTO328, OSI-906, FTY720, triptolide, and AV-65, could be one of the most effective treatments for these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clml.2018.03.007DOI Listing

Publication Analysis

Top Keywords

signaling pathways
16
drug resistance
16
tumor cells
12
pathways multiple
8
multiple myeloma
8
cells
8
resistance tumor
8
stromal cells
8
resistance
5
signaling
4

Similar Publications

Background: Among cardiovascular diseases, adult patients with congenital heart disease represent a population that has been continuously increasing, which is mainly due to improvement of the pathophysiological framing, including the development of surgical and reanimation techniques. However, approximately 20% of these patients will require surgery in adulthood and 40% of these cases will necessitate reintervention for residual defects or sequelae of childhood surgery. In this field, cardiac rehabilitation (CR) in the postsurgical phase has an important impact on the patient by improving psychophysical and clinical recovery in reducing fatigue and dyspnea to ultimately increase survival.

View Article and Find Full Text PDF

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern as compared to normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that in some regulatory regions, increased de novo chromatin activation is linked to clinical progression whereas, in other regions, it is associated with an indolent course.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.

View Article and Find Full Text PDF

Omnipolar mapping versus point-by-point mapping approach for catheter ablation of atrioventricular accessory pathway.

J Interv Card Electrophysiol

January 2025

Department of Cardiovascular Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi, 321-0293, Japan.

Background: The conventional mapping approach for the atrioventricular accessory pathway (AP) involves point-by-point mapping to identify the connection sites of the AP to the atria or ventricle and accurate interpretation of local electrograms. Omnipolar mapping technology (OMT) explains how vector and wave speed are produced by using both unipolar and bipolar signals to obtain omnipolar signals, directions, and conduction velocity. The aim of this study is to verify the effectiveness of OMT for catheter ablation of AP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!